Chapter: Quadratic Equation

Topic: Location of Roots
Q. 1 For what values of m, the equation $2 x^{2}-2(2 m+1) x+m(m+1)=0, m \in R$ has one root is smaller than, 1 and the other root is greater than 1 ?
(1) $m \in(0,3)$
(2) $m \in(-3,0)$
(3) $m>3$
(4) $m<-3$
Q. 2 For what values of m, the equation $2 x^{2}-2(2 m+1) x+m(m+1)=0, m \in R$ has one root is greater than 3 and the other root is smaller than 2 ?
(1) $\mathrm{m} \in\left(\frac{7-\sqrt{33}}{2}, \frac{7+\sqrt{33}}{2}\right)$
(2) $\mathrm{m} \in\left(-\frac{11-\sqrt{73}}{2}, \frac{7+\sqrt{33}}{2}\right)$
(3) $\mathrm{m} \in\left(\frac{11-\sqrt{73}}{2}, \frac{7+\sqrt{33}}{2}\right)$
(4) $\mathrm{m} \in\left(-\frac{7+\sqrt{33}}{2},-\frac{11-\sqrt{73}}{2}\right)$
Q. 3 For what values of m, the equation $2 x^{2}-2(2 m+1) x+m(m+1)=0, m \in R$ has roots α and β are such that both 2 and 3 lie between α and β ?
(1) $\mathrm{m} \in\left(\frac{7+\sqrt{33}}{2}, \infty\right)$
(2) $\mathrm{m} \in\left(-\infty, \frac{7-\sqrt{33}}{2}\right)$
(3) $m<\frac{3}{2}$
(4) $\mathrm{m} \in\left(\frac{11-\sqrt{73}}{2}, \frac{7+\sqrt{33}}{2}\right)$
Q. 4 If the equation $(a-5) x^{2}+2(a-10) x+a+10=0$ has roots of opposite sign, then find the values of a.
(1) $-10<a<5$
(2) $-3<a<2$
(3) $-10>a>5$
(4) $-5<a<5$
Q. 5 If both the roots of $x^{2}-a x+a=0$ are greater than 2 , then find the values of a.
(1) $a>3$
(2) $a<-5$
(3) $a>5$
(4) No such a exists.
Q. 6 If both the roots of $x^{2}+a x+2=0$ lies in the interval $(0,3)$, then find the exhaustive range of values of a.
(1) $\mathrm{a} \in\left(2 \sqrt{2}, \frac{11}{3}\right]$
(2) $\mathrm{a} \in\left(-\frac{11}{3},-2 \sqrt{2}\right]$
(3) $\mathrm{a} \in\left(-\frac{11}{3},-\sqrt{2}\right]$
(4) $\mathrm{a} \in\left(-\frac{11}{3},-2 \sqrt{2}\right)$
Q. 7 The value of λ for which the equation $2 x^{2}-2(2 \lambda+1) x+\lambda(\lambda+1)=0$ may have one root less than λ and other roots greater than λ are given by
(1) $\lambda>-1$
(2) $\lambda<0$
(3) $(-\infty,-1) \cup(0, \infty)$
(4) $\lambda<-1$
Q. 8 The values of a for which the roots of the equation $(a+1) x^{2}-3 a x+4 a=0(a \neq-1)$ are real and greater than 1 are
(1) $\left[-\frac{10}{7}, 1\right]$
(2) $\left[-\frac{12}{7}, 0\right]$
(3) $\left[-\frac{16}{7},-1\right)$
(4) $\left(-\frac{16}{7},-0\right)$

Answer key

Q.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Ans:	1	3	4	1	4	2	3	3

