DAILY PRACTICE PROBLEM

Subject: MATHEMATICS Chapter: Quadratic Equation Topic: Location of Roots DPP No.: 01

- Q.1 For what values of m, the equation $2x^2 2(2m + 1)x + m(m + 1) = 0$, $m \in R$ has one root is smaller than, 1 and the other root is greater than 1? (1) $m \in (0, 3)$ (2) $m \in (-3, 0)$ (3) m > 3 (4) m < -3
- Q.2 For what values of m, the equation $2x^2 2(2m + 1)x + m(m + 1) = 0$, $m \in R$ has one root is greater than 3 and the other root is smaller than 2?

(1)
$$m \in \left(\frac{7-\sqrt{33}}{2}, \frac{7+\sqrt{33}}{2}\right)$$

(2) $m \in \left(-\frac{11-\sqrt{73}}{2}, \frac{7+\sqrt{33}}{2}\right)$
(3) $m \in \left(\frac{11-\sqrt{73}}{2}, \frac{7+\sqrt{33}}{2}\right)$
(4) $m \in \left(-\frac{7+\sqrt{33}}{2}, -\frac{11-\sqrt{73}}{2}\right)$

Q.3 For what values of m, the equation $2x^2 - 2(2m + 1)x + m(m + 1) = 0$, $m \in \mathbb{R}$ has roots α and β are such that both 2 and 3 lie between α and β ?

(1)
$$m \in \left(\frac{7+\sqrt{33}}{2}, \infty\right)$$

(2) $m \in \left(-\infty, \frac{7-\sqrt{33}}{2}\right)$
(3) $m < \frac{3}{2}$
(4) $m \in \left(\frac{11-\sqrt{73}}{2}, \frac{7+\sqrt{33}}{2}\right)$

Q.4 If the equation $(a - 5)x^2 + 2(a - 10)x + a + 10 = 0$ has roots of opposite sign, then find the values of a. (1) -10 < a < 5 (2) -3 < a < 2 (3) -10 > a > 5 (4) -5 < a < 5

- Q.5If both the roots of $x^2 ax + a = 0$ are greater than 2, then find the values of a.(1) a > 3(2) a < -5(3) a > 5(4) No such a exists.
- Q.6 If both the roots of $x^2 + ax + 2 = 0$ lies in the interval (0, 3), then find the exhaustive range of values of a.

(1) $a \in \left(2\sqrt{2}, \frac{11}{3}\right)$	$(2) a \in \left(-\frac{11}{3}, -2\sqrt{2}\right]$
$(3) a \in \left(-\frac{11}{3}, -\sqrt{2}\right]$	$(4) a \in \left(-\frac{11}{3}, -2\sqrt{2}\right)$

Q.7 The value of λ for which the equation $2x^2 - 2(2\lambda + 1)x + \lambda(\lambda + 1) = 0$ may have one root less than λ and other roots greater than λ are given by

(1)
$$\lambda > -1$$
 (2) $\lambda < 0$

 (3) $(-\infty, -1) \cup (0, \infty)$
 (4) $\lambda < -1$

Q.8 The values of a for which the roots of the equation $(a + 1) x^2 - 3ax + 4a = 0$ $(a \neq -1)$ are real and greater than 1 are

$(1)\left[-\frac{10}{7},1\right]$	$(2)\left[-\frac{12}{7},0\right]$
$(3)\left[-\frac{16}{7},-1\right)$	$(4)\left(-\frac{16}{7},-0\right)$

Online Platform for Board Exams, NEET, JEE & NTSE (Kota Office : 8090908042)

Answer key

Q.	1	2	3	4	5	6	7	8
Ans:	1	3	4	1	4	2	3	3

Online Platform for Board Exams, NEET, JEE & NTSE (Kota Office : 8090908042)