DAILY PRACTICE PROBLEM (DPP - 01)

PHYSICAL CHEMISTRY Topic – Mole concepts

DP	P No. – 1				ΚΟΤΑ				
Q.1	Which of the following will contain same number of atoms as 20g of calcium?								
	(1) 24g magnesium		(2) 12g carbon	(2) 12g carbon					
	(3) 8g oxygen gas		(4) 16g oxygen ator	(4) 16g oxygen atom					
Q.2	Which of the following contains the least number of molecules ?								
	(1) 4.4 gm CO ₂		(2) 3.4 gm NH ₃	(2) 3.4 gm NH ₃					
	(3) 1.6 gm CH_4		(4) 3.2 gm SO ₂	(4) 3.2 gm SO ₂					
Q.3	The number of molecule in 4.25 gms of NH ₃ is -								
	(1) 1.505 × 10 ²³	(2) 3.01 × 10 ²³	(3) 6.02 × 10 ²³	(4) N	None of these				
Q.4	If 3.01×10^{20} molecules are removed from 98 mg. of H_2SO_4 , then the number of moles of H_2SO_4 left are								
	(1) 0.1×10^{-3}	(2) $0.5 imes 10^{-3}$	(3) 1.66 × 10 ^{−3}	(4) 9	∂.95 × 10 ⁻²				
Q.5	5.6 lt. of oxygen at STP contains -								
	(1) 6.02 × 10 ²³ atom	IS	(2) 3.01 × 10 ²³ atom	(2) 3.01 × 10 ²³ atoms					
	(3) 1.505 × 10 ²³ ator	ms	(4) 0.7525 × 10 ²³ at	(4) 0.7525 × 10 ²³ atoms					
Q.6	The actual weight of a molecule of water is -								
	(1) 18 gm		(2) 2.99 × 10 ⁻²³ gm	(2) 2.99 × 10 ⁻²³ gm					
	(3) both (1) & (2) ar	e correct	(4) None of these	(4) None of these					
Q.7	Which of the following has the highest mass ?								
	(1) 1 g atom of C		(2) $\frac{1}{2}$ mole of CH ₄						
	(3) 10 ml of water		(4) 3.011 × 10 ²³ ato	ms of oxy	/gen				
Q.8	Which of the following contains greatest number of oxygen atoms?								
	(1) 1 g of O		(2) 1 g of O_2						
	(3) 1 g of O ₃		(4) all have the sam	ne numbe	er of atoms				
Q.9	Sum of number of protons, electrons and neutrons in 12gm of $\frac{12}{6}C$ is :-								
	(1) 1.8	(2) 12.044×10^{23}	(2) 12.044×10^{23}						
	(3) 1.084×10^{25} (4) 10.84×10^{23}								
Q.10	If V ml of the vapours of substance at NTP weight W g. Then molecular wt. of substance is:-								
	(1) (W/V) × 22400	(2) $\frac{V}{W}$ × 22.4	(2) $\frac{V}{W} \times 22.4$						
	(3) (W - V) × 22400		(4) $\frac{W \times 1}{V \times 22400}$	(4) $\frac{W \times 1}{V \times 22400}$					
			v ×∠∠400						

Answer key

Q.	1	2	3	4	5	6	7	8	9	10
Ans:	3	4	1	2	2	2	1	4	3	1

Online Platform for Board Exams, NEET, JEE & NTSE (Kota Office : 8090908042)