

JEE Module Details

(Total = 24)

CLASS - XI : 12 MODULES

1.00	PHYSICS
	Module - 1
Ch. No.	Chapter Name
1.	Mathematical Tools
2.	Vector
3.	Unit, Dimension and Measurement
4.	Kinematics
5.	Newton's Laws of Motion
	Module - 2
Ch. No.	Chapter Name
1.	Work Power and Energy
2.	Center of Mass & Collision
3.	Rotational Motion
4.	Gravitation
	Module - 3
Ch. No.	Chapter Name
1.	Fluid Mechanics
2.	Surface Tension
3.	Elasticity & Viscosity
4.	Simple Harmonic Motion
	Module - 4
Ch. No.	Chapter Name
1.	Thermometry & Calorimetry
2.	Thermal Expansion
3.	Kinetic Theory of Gases
4.	Thermodynamics
5.	Heat Transfer

CHEMISTRY		
	Module - 1	
Ch. No.	Chapter Name	
1.	Some Basic Concept of Chemistry	
2.	Atomic Structure	
3.	Redox Reactions	
4.	States of Matter	
	Module - 2	
Ch. No.	Chapter Name	
1.	Chemical Equilibrium	
2.	Ionic Equilibrium	
3.	Chemical Thermodynamics & Energetics	
	Module - 3	
Ch. No.	Chapter Name	
1.	Periodic Table and Periodic Properties	
2.	Chemical Bonding	
3.	Hydrogen and its compounds	
4.	s-Block elements	
5.	p-Block (13 to 14 groups)	
	Module - 4	
Ch. No.	Chapter Name	
1.	IUPAC	
2.	Isomerism	
3.	GOC-I	
4.	Hydrocarbons	
5.	Environmental Chemistry	

MATHEMATICS

	Module - 1
Ch. No.	Chapter Name
1.	Set & Relations
2.	Trigonometric Ratios
3.	Trigonometric Equation
4.	Solution of a Triangle
	Module - 2
Ch. No.	Chapter Name
1.	Sequence and Series
2.	Quadratic Equations and Inequalities
3.	Complex Numbers
4.	Limits & Derivative

	Module - 3
Ch. No.	Chapter Name
1.	Binomial Theorem
2.	Permutations and Combinations
3.	Straight Lines
4.	Circle
	Module - 4
Ch. No.	Chapter Name
1.	Parabola
2.	Hyperbola
3.	Ellipse

JEE : Chemistry

Sample Module

STUDENT NAME:	
SECTION:ROLL NO:	

CONTENTS

Chapter No.	Торіс	Page No.
1.	Introduction	01
2.	Arrhenius Concept	02
3.	Ostwald's Dilution Law	03
4.	Biodata Of Water	05
5.	pH Calculation Of Different Type Of Solution	07
6.	Weak Acid, Weak Base and their pH, Polyprotic acid	09
7.	SALTS, TYPES OF SALT AND CONJUGATE THEORY	13
8.	HYDROLYSIS OF SALTS	15
9.	SOLUBILITY AND SOLUBILITY PRODUCT (Ksp)	24
10.	APPLICATION OF SOLUBILITY PRODUCT (Ksp)	25
11.	pH INTRODUCTION	31
12.	BUFFER SOLUTION	32
13.	BUFFER CAPACITY	34
14.	OSTWALD THEORY OF INDICATORS	36
15.	ACID AND BASE CONCEPT	38
16.	BRONSTED-LOWRY CONCEPT (1923	39
17.	LEWIS CONCEPT (1939)	40
18.	EXERCISE-I	43-54
19.	EXERCISE-II	55-59
20.	EXERCISE-III	60-66
21.	Answer Key	67-68

PREFACE

This module covers the theoretical concepts associated with NEET syllabus and contain sufficient multiple choice and previous year questions. We are confident that students would find this module helpful for their preparations.

Research & Development team of NEET Sarthi keeps working to improve the study material. Suggestions and inputs from students and readers are always welcome.

About NEET Sarthi

NEET Sarthi, A platform for JEE, NEET, NTSE and other competitive exams, is an initiative by highly renowned faculties from Kota (the coaching capital of India) and Tech team from Bangalore (the Silicon Valley of India). Our mission is to provide extensive and high-quality education to students. Specially, our vision is to be top most institute in terms of academic quality & student care.

Our top Faculties teaches students in 2-way online interactive classes. We create high quality questions and video solutions for NEET/ JEE preparation. Every time you use NEET Sarthi App for NEET & NTSE and JEE Sarthi app for JEE mains & advanced, you move one step closer to fulfill your dream to become a Doctor or Engineer!

"If you can dream it, you can do it"

-Dr. A.P.J. Abdul kalam

NEET SARTHI (Brand owned by registered company)

Copyright © 2021 Sarthee Neet Guru Academy LLP, Kota (Raj.)

All rights reserved exclusively with Sarthee Neet Guru Academy LLP. No part of this publication may be reproduced, distributed, redistributed, copied or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of Sarthee Neet Guru Academy LLP.

Chapter-01 **Ionic Equilibrium**

OSTWALD'S DILUTION LAW

BIODATA OF WATER

SALTS, TYPES OF SALT

HYDROLYSIS OF SALTS

SOLUBILITY PRODUCT

Acid and Base concept

AND CONJUGATE

SOLUBILITY AND

Buffer solution

THEORY

(Ksp)

•

INTRODUCTION

Formulae: A. Some values of Log : $\log 1 = 0$ (i) $\ln x = \log_e x = 2.303 \log_{10} x = 2.303 \log x$ (ii) $\log (x \times y) = \log x + \log y$ log 2 = 0.3010 $\log 3 = 0.4771$ (iii) log $= \log x - \log y$ $\log 4 = 0.6020$ $\log 5 = 0.699$ (iv) $\log x^{y} = y \log x$ $\log 6 = 0.7781$ **Ex.** (i) log 6 = log (2 × 3) log 7 = 0.8451 = log 2 + log 3 $\log 8 = 0.9030$ = 0.3010 + 0.4771 = 0.7781 $\log 9 = 0.9542$ (ii) $\log 30 = \log (3 \times 10)$ $\log 10 = 1$ = log 3 + log 10 $\log 11 = 1.04$ = log 0.4471 + 1 = 1.4471 log 100 = 2 (iii) $\log 1000 = \log 10^3$ log 1000 = 3 $= 3 \log 10 = 3 \times 1 = 3$

Some terms which are used in ionic equilibrium:

Antilog: Antilog (x) = 10^x

Ex. Antilog $(2) = 10^2 = 100$

Antilog $(0.3010) = 10^{0.3010} = 2$

Antilog [log (2)] = Antilog (0.3010) = 2

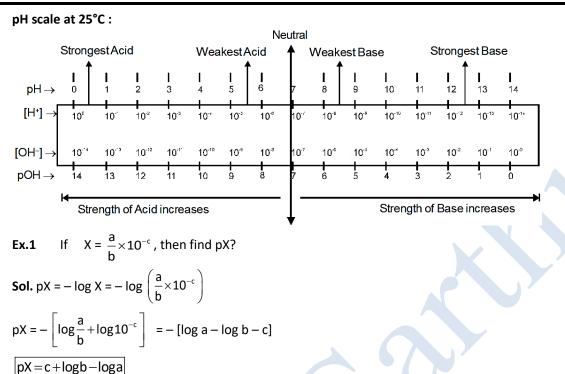
pH - Scale: Given by - Sorenson

pH Scale is called Sorenson scale.

pH scale is a measuring scale used to measure strength of acid and base and its value is equal to -log[H⁺]

i.e.
$$pH = -\log[H^+] = 1$$

 $\log \frac{1}{\left[H^{+} \right]}$ $[H^+] = 10^{-3}$ Ex.


$$pH = -\log 10^{-3} = + 3\log 10 = 3$$

Conclusion:

lf pH = x then $[H^+] = 10^{-x}$ or Vice versa i.e. If $[H^+] = 10^{-x}$ then pH = x

pOH \rightarrow It is equal to $-\log [OH^{-}]$

i.e.
$$pOH = -\log [OH^-] = \log \frac{1}{[OH^-]}$$

According to strength, ionic conductors are of two types -

- (1) Strong electrolytes Those ionic conductors which are completely ionized in aqueous solution are called as strong electrolytes.
 - **Ex.** Na⁺Cl⁻, K⁺Cl⁻, etc.

For strong electrolyte the value of degree of ionisation is 100% i.e. $\alpha = 1$

- **Ex.** (a) Strong acid \rightarrow H₂SO₄, HCl, HNO₃, HClO₄, HBr, HI
 - (b) Strong base \rightarrow KOH, NaOH, Ba(OH)₂, CsOH, RbOH
 - (c) All Salts \rightarrow NaCl, KCl, CuSO₄
- (2) Weak electrolytes Those electrolytes which are partially ionized in aqueous solution are called as weak electrolytes. For weak electrolytes the value of α is less than one.

Ex. (a) Weak acids \rightarrow HCN, CH₃COOH, HCOOH, H₂CO₃, H₃PO₃, H₃PO₂, B(OH)₃, etc.

↓ H₃BO₃

(boric acid)

(b) Weak bases \rightarrow NH₄OH, Cu(OH)₂, Zn(OH)₂, Fe(OH)₃, Al(OH)₃ etc.

(A) ARRHENIUS CONCEPT:

- (1) According to Arrhenius when an electrolyte dissolves in aqueous solution it spilts up into two oppositely charged particles i.e. cation and anion.
- (2) In an electrolytic solution (Aqueous solution of electrolyte), total +ve charge = total –ve charge i.e. solution is electrically neutral.
 - \Rightarrow In an electrolytic solution number of +ve ions may or may not be equal to the number of negative ions.
- (3) Properties of an electrolytic solution are defind by its ions.

Ex. Blue colour of $CuSO_4$ aqueous solution is due to Cu^{+2} ion (dark blue colour)

(4) When electric current is pass in aqueous solution of electrolyte then cation shows migration towards cathode where as anion shows migration towards anode.

(5) Ionization is the reversible reaction. In it an equilibrium is set up between unionized moles and ionized moles. This condition of the reversible ionic reaction is known as ionic equilibrium.

 $AB (Aq.) \rightleftharpoons A^+ (Aq.) + B^- (Aq.)$

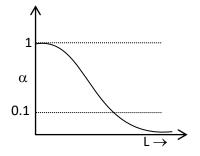
According to Law of Mass Action (L.O.M.A.)

Ionisation constant
$$K = \frac{\begin{bmatrix} A^+ \end{bmatrix} \begin{bmatrix} B^- \end{bmatrix}}{\begin{bmatrix} AB \end{bmatrix}}$$

(B) OSTWALD'S DILUTION LAW

- \Rightarrow Ostwald was the first to apply law of mass action to ionic equilibrium.
- \Rightarrow Ostwald dilution law is applicable only for weak electrolytes.

Statement :


According to Ostwald when solution of weak electrolyte is diluted then degree of ionisation of solution is increased, is called dilution law.

Let AB (aq.)
$$\rightleftharpoons A^{+}(aq.) + B^{-}(aq.)$$

Initial concentration C 0 0
Degree of ionisation (α) (C – C α) (C α) (C α)
According to L.O.M.A.
Ionisation constant $K = \frac{\left[A^{+}\right]\left[B^{-}\right]}{\left[AB\right]}$
 $K = \frac{C\alpha \times C\alpha}{C(1-\alpha)} = \frac{C\alpha^{2}}{(1-\alpha)}$
If $\alpha <<<<1$ then $1-\alpha \simeq 1$
 $K = C\alpha_{2}$ or $\alpha = \sqrt{\frac{K}{C}}$ (K = constant, At constant temperature)
 $\alpha \propto \frac{1}{\sqrt{C}}$ (C $\propto \frac{1}{v}$)
 $\alpha \propto$
volume = dilution $\alpha \propto \sqrt{dilution}$ by dilution law
dilution $\uparrow \alpha \uparrow$
At infinite dilution, $\alpha = 100\%$

Thus, for weak electrolytes the degree of ionisation is directly proportional to square root of dilution or inversely proportional to square root of concentration. This law is known as Ostwald Dilution Law.

Note: (1) At infinite dilution the value of α becomes equal to one.

(2) The value of concentration should be in terms of normality.

JEE ⊮ Sarthi KOTA

Application of Ostwald's Dilution Law :

 $K = C\alpha^2$ (a) For mono basic weak acid (HA) (b) For mono acidic weak base (BOH) (i). Ionisation constant (K_a) (i). Ionisation constant (K_b) $HA \rightleftharpoons H^+ + A^ BOH \rightleftharpoons B^+ + OH^-$ Initial concentration С 0 0 Initial concentration С 0 0 $C - C\alpha$ $C\alpha$ $C\alpha$ $C\alpha$ At equilibrium $C - C\alpha C\alpha C\alpha$ At equilibrium If degree of ionisation is $\boldsymbol{\alpha}$ If degree of ionisation is $\boldsymbol{\alpha}$ $K_b = = \frac{C\alpha \times C\alpha}{C - C\alpha}$ $K_{a} = \frac{\left[H^{+}\right]\left[A^{-}\right]}{\left[HA\right]} = \frac{C\alpha \times C\alpha}{C - C\alpha}$ $K_{b} = \frac{C^{2}\alpha^{2}}{C(1-\alpha)} = \frac{C\alpha^{2}}{(1-\alpha)}$ $K_{a} = \frac{C^{2}\alpha^{2}}{C(1-\alpha)} = \frac{C\alpha^{2}}{(1-\alpha)}$ $\therefore \alpha <<<< 1$ $\therefore (1-\alpha) \approx 1$ $\therefore \alpha <<<< 1$ \therefore $(1 - \alpha) \approx 1$ \therefore K_b = C α^2 \therefore K_a = C α^2 $K_a \rightarrow$ Ionisation constant of weak acid Where $K_b \rightarrow$ lonisation constant of weak base (ii). [OH⁻] (Concentration of OH⁻) (ii). [H⁺] (Concentration of H⁺) $[OH^{-}] = C\alpha$ (1) $[H^+] = C\alpha$(1) $K_a = C\alpha^2 \text{ or } \alpha = \sqrt{\frac{K_a}{C}}$ (2) $K_b = C\alpha^2 \text{ or } \alpha = \sqrt{\frac{K_b}{C}}$ (2) from Eq. (1) and (2) from Eq. (1) and (2) $[H^+] = C \times \frac{\sqrt{K_a}}{\sqrt{c}}$ $[OH^{-}] = C \times \frac{\sqrt{K_{b}}}{\sqrt{c}}$ $[OH^{-}] = \sqrt{K_{b} \times C}$ $[H^+] = \sqrt{K_a \times C}$ (iii). $pH = -log [H^+]$ (iii). $pOH = -\log [OH^{-}]$ put the value of [H⁺] put the value of [OH⁻] $pOH = -log(\sqrt{K_b \times C}) = -log(K_b \times C)^{1/2}$ $pH = -log(\sqrt{K_a \times C}) = -log(K_a \times C)^{\frac{1}{2}}$ $pOH = -\frac{1}{2} [logK_b + logC]$ $pH = -\frac{1}{2} \left[\log K_a + \log C \right]$ $pOH = -\frac{1}{2}logK_{b} - \frac{1}{2}logC$ $pH = -\frac{1}{2}\log K_a - \frac{1}{2}\log C$ $pOH = \frac{1}{2}pK_{b} - \frac{1}{2}logC$ $pH = \frac{1}{2}pK_a - \frac{1}{2}logC$ In summary : In summary : 1. $K_b = C\alpha^2$ 1. $K_a = C\alpha^2$ 2. $[OH^{-}] = C\alpha = \sqrt{K_{h} \times C}$ 2. $[H^+] = C\alpha = \sqrt{K_a \times C}$ 3. $pOH = -\log [OH^{-}]$ 3. $pH = -\log [H^+]$ Or $pOH = \frac{1}{2}pK_{b} - \frac{1}{2}logC$ or $pH = \frac{1}{2}pK_a - \frac{1}{2}logC$

CHEMISTRY

Limitation of Ostwald Dilution Law :

(1) It is not applicable for strong electrolytes.

(2) It is not applicable for saturated solutions.

Factors affecting the Value of Degree of ionisation :

- (1) Temperature \rightarrow On increasing temperature, ionization increases so α increases.
- (2) Dilution $\rightarrow \alpha \propto \sqrt{V}$ so on dilution, α increases.
- (3) Nature of electrolytes
 - (i) Strong electrolytes (ii) Weak electrolytes
 - α = 100% α < 100%

(4) Nature of solvent

If Dielectric constant μ of solvent increases then the value of α increases.

$$\begin{split} H_2O &\rightarrow \mu = 81 \\ D_2O &\rightarrow \mu = 79 \\ C_6H_6 &\rightarrow \mu = 2.5 \\ CCl_4 &\rightarrow \mu = 0 \end{split}$$

BIODATA OF WATER

(a) Nature of water is neutral.

i.e. at 25°C pH = 7 and pOH = 7

- ∴ pH = pOH
- **(b)** Concentration of H⁺ and OH⁻ ions in 1 litre water

 $[H^+] = 10^{-7} \text{ mol } L^{-1}$ and $[OH^-] = 10^{-7} \text{ mol } L^{-1}$

(c) Number of H⁺ and OH⁻ ions in 1 litre water

Number of H⁺ ions = $10^{-7}N_A$ and number of OH⁻ ions = $10^{-7}N_A$

- (d) Number of H_2O moles in 1 litre water 1000/18 = 55.5 moles
- (e) Number of H_2O molecules in 1 litre water = 55.5 N_A (N_A = avogadro's number)
- (f) Molar concentration of H_2O molecules in water = 55.5 mol L^{-1}
- (g) In water (Number of H₂O molecules : Number of H⁺ ions) = 55.5 N_A : 10^{-7} N_A = 55.5 × 10^7 : 1 i.e. one H⁺ ion is obtained from 55.5 × 10^7 H₂O molecules
 - So, degree of ionisation of water

$$\alpha = \frac{x}{a} = \frac{1}{55.5 \times 10^{+7}} = 18 \times 10^{-10} = 1.8 \times 10^{-9}$$
$$\alpha\% = 1.8 \times 10^{-7}\%$$

Hence, water is a very weak electrolyte.

K (Ionisation constant of water)

$$H_2 O \rightleftharpoons H^+ + OH^-$$

$$K = \frac{[H] [OH]}{[H_2O]}$$

$$K = \frac{10^{-7} \times 10^{-7}}{55.5} \quad \text{or} \quad \overline{K = 1.8 \times 10^{-16}}$$

(h) Ionic product of water Represented by [K_w] $K \times [H_2O] = [H^+] [OH^-]$ $K_w = [H^+] [OH^-]$ At 25°C – $K_W = 10^{-7} \times 10^{-7} = 10^{-14}$ $K [H_2O] = K_W \implies K_W > K$ (always) $K_W = [H^+] [OH^-]$ taking -log on both sides $-\log K_{W} = -\log [H^{+}] - \log [OH^{-}]$ $pK_w = pH + pOH$ Nature of water is neutral so [pH = pOH] $pK_W = pH + pH$ $pK_W = pOH + pOH$ $2pH = pK_W$ $2 \text{ pOH} = \text{pK}_W$ <u>рК_w</u> 2 pOH = $\frac{pK_w}{2}$ pH = $pH = pOH = \frac{pK_w}{2}$

At 25°C, $K_W = 10^{-14}$ or $pK_W = 14$ pH + pOH = 14 or pH = pOH = 7

(i) Main Points :-

$$pH = pOH = \frac{pK_w}{w}$$

At 25°C, pK_w = pH + pOH =14

(j) Effect of temperature: -

 $H_2O \rightleftharpoons H^+ + OH^-$

On increasing temperature rate of the forward reaction increases i.e. α increases or [H⁺] and [OH⁻] increases or [H⁺][OH⁻] increases i.e. K_w increases means pH decreases or pOH decreases.

$$\begin{split} \mathsf{T} \uparrow &= \alpha \uparrow = [\mathsf{H}^+] \ [\mathsf{OH}^-] \uparrow = \mathsf{K}_\mathsf{W} \uparrow \implies \mathsf{p}\mathsf{K}_\mathsf{W} \downarrow \\ \mathsf{At} \ \mathsf{25^{\circ}} \ \mathsf{C}, \ \mathsf{K}_\mathsf{W} = \mathsf{10}^{-14} \end{split}$$

At 90° C, $K_W = (100 \times 10^{-14}) = 10^{-12}$

Parameter	At 25°C	At 90°C
Kw	10 ⁻¹⁴	10 ⁻¹²
рК _w	14	12
$pH = \frac{pK_w}{2} = pOH$	7	6
[H⁺] = [OH⁻]	10 ⁻⁷	10 ⁻⁶
рН + рОН	14	12

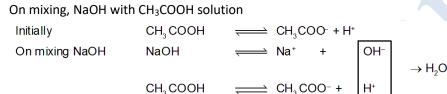
Important point:

On increasing temperature, both $[H^+]$ and $[OH^-]$ increases equally so water remains neutral but neutral pH changes from 7 to 6 at 90°C.

or ions.	
(a) Common ion effect	(b) Odd ion effect
When a weak electrolyte having a	When a weak electrolyte having a
common ion, is mixed with strong	odd ion, is mixed with strong electrolyte then
electrolyte then the degree of ionisation	the degree of ionisation of weak
of weak electrolyte is decreased. This	electrolyte is increased. This effect is
effect is called common ion effect.	called odd ion effect.

Common ion:

On mixing CH₃COONa with CH₃COOH solution


Initially
$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$

On mixing $CH_3COONa \rightleftharpoons CH_3COO^- + Na^+$

 $CH_3COOH \rightleftharpoons CH_3COO^-H H^+$

 CH_3COO^- is common ion

Odd ion:

(b)

(a) Strong acid Solution :

- (i) If concentration is greater than 10⁻⁶ M, in this case H⁺ ions coming from water can be neglected.
 So [H⁺] = normality of strong acid Solution
- (ii) If concentration is less than 10^{-6} M, in this case H⁺ ions coming from water cannot be neglected. So [H⁺] = normality of strong acid + H⁺ ions coming from water in presence of this strong acid
- **Ex-2** Calculate pH of 10⁻⁸M HCl Solution.

Sol.
$$H_2O$$
 $H^+ + OH^-$
 $10^{-8} + x$
 $K_w = [H^+] [OH^-]$
 $10^{-14} = x(x \times 10^{-8})$
 $\Rightarrow x^2 + x \times 10^{-8} - 10^{-14} = 0$
 $x = \frac{-10^{-8} \pm \sqrt{10^{-16} + 4} - x - 10^{-14}}{2} = \frac{-10^{-8} + 10^{-7}\sqrt{4 + \frac{1}{100}}}{2} = \frac{(\sqrt{401} - 1)10^{-8}}{2} = 0.95 \times 10^{-7}$
 $[H^+] = 10.5 \times 10^{-8} = 1.05 \times 10^{-7}$
 $[PH] = 7 - \log 1.05 \approx 6.98$
 10^{-9} M HCl pH ≈ 7
 10^{-16} M HCl pH ≈ 7
Strong base Solution :

Calculate the $[OH^-]$ which will be equal to normality of the strong base solution and then use $K_W = [H^+] \times [OH^-] = 10^{-14}$, to calculate $[H^+]$.

JEE Sarthi

кота

JEE ⊮ Sarthi KOTA

Ex-3 Calculate pH of 10^{-7} M of NaOH Solution **Sol.** [OH⁻] from NaOH = 10^{-7} [OH⁻] from water = x < 10^{-7} M (due to common ion effect) H₂O \longrightarrow OH⁻ + H⁺ - (x + 10^{-7}) x K_w = [H⁺] [OH⁻] = 10^{-14} = x (x + 10^{-7}) x² + 10^{-7} x - 10^{-14} = 0 \Rightarrow x = $\frac{\sqrt{5} - 1}{2}$ × 10^{-7} = 0.618×10^{-7} ($\sqrt{5}$ = 2.236) [OH⁻] = 10^{-7} + 0.618×10^{-7} = 1.618×10^{-7} pOH = 7 - log (1.618) = 6.79 pH = 14 - 6.79 = 7.21**pH of mixture of two strong acids :**

(c) pH of mixture of two strong acids :

If V_1 volume of a strong acid solution of normality N_1 is mixed with V_2 volume of another strong acid solution of normality N_2 , then

Number of H^+ ions from I-solution = N_1V_1

Number of H^+ ions from II-solution = $N_2 V_2$

If final normality is N and final volume is V, then

$$NV = N_1 V_1 + N_2 V_2$$

[dissociation equilibrium of none of these acids will be disturbed as both are strong acid]

$$[H^+] = N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

(d) pH of mixture of two strong bases :

Similar to above calculation

$$[OH^{-}] = N = \frac{N_1V_1 + N_2V_2}{V_1 + V_2} [H^{+}] = \frac{10^{-14}}{[OH^{-}]}$$

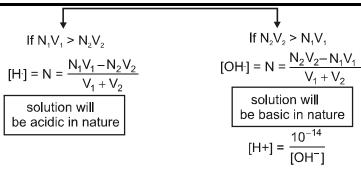
Ex-4 Calculate pH of mixture of (400ml , $\frac{1}{200}$ M H₂SO₄) + (400ml, $\frac{1}{100}$ M HCl) +(200 ml of water)

Sol.
$$N_1V_1 = \frac{1}{100} \times \frac{400}{1000} = \frac{4}{1000}$$
, $N_2V_2 = \frac{4}{1000}$, H^+ ions from water will be neglected

$$_{1}+N_{2}V_{2}=8\times10^{-3}$$
 [H⁺] = $\frac{8\times10^{-3}}{1}=8\times10^{-3}$

 $pH = 3 - \log 8 = 2.1$

N₁V


(e) pH of mixture of a strong acid and a strong base :

- Acid Base neutralisation reaction will take place.
- The solution will be acidic or basic depending on which component has been taken in excess.
- O If V₁ volume of a strong acid solution of normality N₁ is mixed with V₂ volume of a strong

base solution of normality N₂ , then

Number of H^+ ions from I-solution = N_1V_1

Number of OH^- ions from II-solution = $N_2 V_2$

Ex-5 Calculate pH of mixture of (400ml,
$$\frac{1}{200}$$
 M Ba(OH)₂) + (400ml, $\frac{1}{50}$ M HCl) + (200ml of Water)

Sol.
$$[H^+] = \frac{400 \times \frac{1}{50} - 400 \times \frac{1}{200} \times 2}{1000} = 4 \times 10^{-3}$$
, so $pH = 3 - 2 \log 2 = 2.4$

Weak Acid, Weak Base and their pH, Polyprotic acid :

(f) pH of a weak acid (monoprotic) Solution :

- Weak acid does not dissociate 100% therefore we have to calculate the percentage dissociation using K_a, dissociation constant of the acid.
- We have to use Ostwald's Dilution law (as have been derived earlier)

$$HA \longleftarrow H^{+} + OH^{-}$$

$$t = 0 \qquad C \qquad 0 \qquad 0$$

$$t = t_{eq} \qquad C(1-\alpha) \qquad C\alpha \qquad C\alpha \qquad K_{a} = \frac{[H^{+}] \quad [OH^{-}]}{[HA]} = \frac{C \quad \alpha^{2}}{1-\alpha}$$

$$If \alpha <<1 \Rightarrow (1-\alpha) \approx 1 \qquad \Rightarrow \qquad K_{a} \approx C\alpha^{2} \qquad \Rightarrow \qquad \alpha = \sqrt{\frac{K_{a}}{C}} \text{ (is valid if } \alpha < 0.1 \text{ or } 10\%)$$

$$[H^{+}] = C\alpha = C \sqrt{\frac{K_{a}}{C}} = \sqrt{K_{a} \times C} \qquad \text{So } \mathbf{pH} = \frac{1}{2}(\mathbf{pK}_{a} - \log \ \mathbf{C})$$
on increasing the dilution
$$\Rightarrow C \downarrow \Rightarrow \alpha \uparrow \qquad \text{and } [H^{+}] \downarrow \Rightarrow \mathbf{pH} \uparrow$$

$$Ex-6 \qquad \text{Calculate } \mathbf{pH} \text{ of } \qquad 10^{-1} \text{ M CH}_{3}\text{COOH}$$
Take $K_{a} = 2 \times 10^{-5}$.
$$Sol. \qquad CH_{3}\text{COOH} \longleftarrow CH_{3}\text{COO}^{-} + H^{+}$$

$$C \qquad 0 \qquad 0$$

$$C(1-\alpha) \qquad C\alpha \qquad C\alpha$$

$$K_{a} = \frac{C\alpha^{2}}{1-\alpha} \Rightarrow \alpha = \sqrt{\frac{K_{a}}{C}} = \sqrt{\frac{2 \times 10^{-5}}{10^{-1}}} = \sqrt{2 \times 10^{-4}} \quad (\alpha << 0.1)$$
So,
$$[H^{+}] = 10^{-1} \times \sqrt{2} \times 10^{-2} \Rightarrow \mathbf{pH} = 3 - \frac{1}{2}\log 2 = 2.85 \text{ Ans.}$$

(g) pH of a mixture of weak acid(monoprotic) and a strong acid Solution :

- \circ Weak acid and Strong acid both will contribute H⁺ ion.
- For the first approximation we can neglect the H⁺ ions coming from the weak acid Solution and calculate the pH of the Solution from the concentration of the strong acid only.

JEE ⊮ Sarthi KOTA

0	To calculate exact pH, we have to take the effect of presence of strong acid on the dissociation equilibrium of the weak acid.		
	If $[SA] = C_1$ and $[WA] = C_2$, then $[H^+]$ from $SA = C_1$ the weak acid will dissociate as follows.		
	$HA \stackrel{\longrightarrow}{\longleftarrow} H^+ + A^-$		
	C ₂ 0 0		
	$C_2(1-\alpha)$ $C_2\alpha + C_1$ $C_2\alpha$ $K_a = \frac{(C_2\alpha + C_1)C_2\alpha}{C_2(1-\alpha)}$ ($\alpha <<<1$)		
	(The weak acids dissociation will be further suppressed because of presence of strong acid, common ion effect)		
	$K_a = (C_2 \alpha + C_1) \alpha$		
	Total H ⁺ ion concentration = $C_1 + C_2 \alpha$		
О	If the total [H ⁺] from the acid is less than 10 ⁻⁶ M, then contribution from the water can be neglected at		
	25ºC temp., if not then we have to take [H ⁺] from the water also.		
(h)	pH of a Solution of a polyprotic weak acid :		
О	Diprotic acid is the one, which is capable of giving 2 protons per molecule in water.		
	Let us take a weak diprotic acid (H_2A) in water whose concentration is cM.		
	In an aqueous Solution , following equilbria exist.		
lf			
$\alpha_1 = d$	egree of ionization of H ₂ A in presence of HA ⁻ K_{a_1} = first ionisation constant of H ₂ A.		
$\alpha_2 = d$	egree of ionisation of HA ⁻ in presence of H ₂ A. K_{a_2} = second ionisation constant of H ₂ A.		
	I step II step		
	$H_2A + H_2O \iff HA^- + H_3O^+ \qquad HA^- + H_2O \iff A^{2-} + H_3O^+$		
at eq.	$c(1 - \alpha_1) \qquad c\alpha_1(1 - \alpha_2) \qquad (c\alpha_1 + c\alpha_1 \alpha_2) \text{at eq. } c\alpha_1(1 - \alpha_2) \qquad c\alpha_1 \alpha_2 (c\alpha_1 + c\alpha_1 \alpha_2)$		
	$(K_{eq})_1 (H_2O) = \frac{[H_3O^+][HA^-]}{[H_2A]} = K_{a_1} \qquad [K_{eq}]_2 [H_2O] = \frac{[H_3O^+][A^{2-}]}{[HA^-]} = K_{a_2}$		
	$\therefore K_{a_1} = \frac{(c\alpha_1 + c\alpha_1\alpha_2)[c\alpha_1(1 - \alpha_2)]}{c(1 - \alpha_1)} \qquad \qquad K_{a_2} = \frac{(c\alpha_1 + c\alpha_1\alpha_2)(c\alpha_1c\alpha_2)}{c\alpha_1 (1 - \alpha_2)}$		
	$= \frac{[c\alpha_1(1+\alpha_2)][\alpha_1(1-\alpha_2)]}{1-\alpha_1} \qquad \dots \dots (i) \qquad = \frac{[c\alpha_1(1+\alpha_2)] \alpha_2}{1-\alpha_2} \qquad \dots \dots \dots (ii)$		
	Knowing the values of K_{a_1} , K_{a_2} and c, the values of α_1 and α_2 can be calculated using equations (i) and (ii).		

After getting the values of α_1 and α_2 [H₃O⁺] can be calculated as.

 $[\mathsf{H}_3\mathsf{O}^+]_{\mathsf{T}} = \mathsf{c}\alpha_1 + \mathsf{c}\alpha_1\alpha_2$

Finally, for calculating pH

- If the total $[H_3O^+] < 10^{-6}$ M, the contribution of H_3O^+ from water should be added
- If the total $[H_3O^+] > 10^{-6} M$, then $[H_3O^+]$ contribution from water can be ignored.

Using this $[H_3O^+]$, pH of the Solution can be calculated.

Approximation

For diprotic acids, ${\rm K_{a_2}}<<{\rm K_{a_1}}$ and α_2 would be even smaller than α_1 .

 \therefore 1 – $\alpha_2 \approx 1$ and 1 + $\alpha_2 \approx 1$

Thus, equation (i) can be reduced to $K_{a_1} = \frac{C\alpha_1 \times \alpha_1}{1 - \alpha_1}$

This is an expression similar to the expression for a weak monoprotic acid.

- Hence, for a diprotic acid (or a polyprotic acid) the $[H_3O^+]$ can be calculated from its first equilibrium constant expression alone provided . $K_{a_0} \ll K_{a_0}$
 - **Ex:7** Calculate pH, [HS⁻], S²⁻, [Cl⁻] in a Solution which is 0.1 M HCl & 0.1 M H₂S given that Ka₁ (H₂S) = 10^{-7} , Ka₂ (H₂S) = 10^{-14} also calculate $\alpha_1 \& \alpha_2$

Sol. HCl + H₂S

- 0.1 0.1 C = 0.1
- \therefore pH = 1 (most of [H⁺] comes from HCl)

$$H_2S \qquad \overleftarrow{\qquad} H^+ + SH^-$$

$$C_1 \qquad +0.1$$

$$C_1 - C_1 \alpha_1$$
 $C_1 \alpha_1$, $C_1 \alpha_1$

$$Ka_1 = \frac{C_1 \alpha_1 \times 10^{-1}}{C_1 (1-1)}$$

$$C_{1}(1-0)$$

$$1 = \frac{10}{10^{-1}} = 10^{-1}$$

a

$$HS^{-} \implies S^{2-} + H^{+}$$

 $C_1\alpha_1(1 - \alpha_2)$ $C_1\alpha_1\alpha_2$ 0 $10^{-14} = 0.1 \times \alpha_2$

$$\Rightarrow$$
 $\alpha_2 = 10^{-13}$

$$[S_2^{2^-}] = C\alpha_1 \alpha_2 = 10^{-1} \times 10^{-6} \times 10^{-13} = 10^{-20} M$$

10⁻¹ + Cα

Ex.8 Calculate pH 10^{-1} M HCl in 10^{-3} M CH₃COOH [K_a = 2 x 10^{-5}]

Sol. CH₃COOH ⊂ CH₃COO⁻ + H⁺

 $C(1-\alpha)C\alpha$

; C

H⁺ ion can be treated completely from HCl due to less dissociation of CH₃COOH and its low conc.

$$2 \times 10^{-5} = \frac{C\alpha \times 10^{-1}}{C}$$

 $\alpha = 2 \times 10^{-4}$
 $[H^{+}]_{CH_{3}COOH} C\alpha = 2 \times 10^{-7}$

(J)

- Mixture of a polyprotic weak Acid & Strong Acid
 - (i) pH can be calculated by taking the concentration of strong acid only
 - (ii) For other calculations we should consider the dissociation equilibria of weak polyprotic acid as done in equation.

JEE ⊪ Sarthi KOTA

Ex.9	At dissociation constant of heavy water is 4 × 10 ⁻¹⁵ at 35°c Its density is 1.04 g/ml calculate its ionic product & degree of dissociation.		
Sol.	kw = kd[D ₂ 0] = $\left(4 \times 10^{-15} \times \frac{1040}{20}\right)$ $d = \sqrt{\frac{kw}{c}} = \sqrt{\frac{2.08 \times 10^{-13}}{5^2}} = 12.64 \times 10^{-8}$		
Ex.10 Sol.	Calculate ionic product of H2O at 50°c $\Delta H = 13.7 \times 10^3$ cal		
	$\log = \frac{k_2}{10^{-14}} = \frac{13.7 \times 10^3}{2} \left(\frac{1}{290} - \frac{1}{323}\right)$		
Ex.11	The hydronium ion conc. in an aq. H2Co3 solution is 4×10^{-4} m at 25°c OH ⁻ ion the sol is.(1) 0(2) 2.5×10^{-10} (3) 2.5×10^{-3} (4) 2.5×10^{-11} m		
Sol. Ex.12	 4 Select correct option from the following ? (1) pkw increase with increase of temperature (2) pkw decrcase with increase of temperature 		
Sol	(3) $pk_w = 14$ at all temperature 2 (4) $pk_w = pH$ at all temperature		
	PRACTICE SECTION-01		
Q.1	lonisation constant of CH ₃ COOH is 1.7×10^{-5} and concentration of H ⁺ ions is 3.4×10^{-4} . Then initial concentration of CH ₃ COOH molecules is		
	(1) 3.4×10^{-4} (2) 3.4×10^{-3} (3) 6.8×10^{-3} (4) 1.7×10^{-3}		
Q.2	At 25°C, the dissociation constant of a base, BOH is 1.0×10^{-12} . The concentration of hydroxyl ions in 0.01 M aqueous solution of the base would be : (1) 1.0 × 10 ⁻⁵ mod l = 1 (2) 1.0 × 10 ⁻⁷ mod l = 1 (2) 2.0 × 10 ⁻⁶ mod l = 1 (4) 1.0 × 10 ⁻⁵ mod l = 1		
Q.3	(1) $1.0 \times 10^{-6} \text{ mol } L^{-1}$ (2) $1.0 \times 10^{-7} \text{ mol } L^{-1}$ (3) $2.0 \times 10^{-6} \text{ mol } L^{-1}$ (4) $1.0 \times 10^{-5} \text{ mol } L^{-1}$ Which of the following concentrations has the largest degree of dissociation for a weak acid? (1) 1.0 M (2) 0.5 M (3) 0.10 M (4) 0.01 M		
Q.4	Calculate the amount of acetic acid in one litre of its solution $\alpha = 1\%$ and $K_1 = 1.8 \times 10^{-5}$. (1) 0.18 gm (2) 10.8 gm (3) 108 gm (4) 18 gm		
Q.5	The K _w of $2H_2O \rightleftharpoons H_3O^+ + OH^-$ changes from 10^{-14} at 25° C to 9.62×10^{-14} at 90° C. Choose correct option. (1) pH of H ₂ O at 90° C is 6.51 and water become acidic (2) pH of H ₂ O at 90° C is 6.51 and water remains neutral (3) pH and neutrality of water both remains unchanged (4) pH of H ₂ O at 90° C is 6.1 and water remains neutral		
Q.6	The K _a values of acetic acid, hypochlorous acid and formic acid are 1.74×10^{-5} , 3.0×10^{-8} and 1.8×10^{-4} respectively. Which of the following orders of pH of 0.1 mol dm ⁻³ solutions of these acids is correct? (1) Acetic acid > Hypochlorous acid > Formic acid (2) Hypochlorous acid > Acetic acid > Formic acid (3) Formic acid > Hypochlorous acid > Acetic acid (4) Formic acid > Acetic acid > Hypochlorous acid		
Q.7	How much water should be added to 10.0 g of acetic acid to give a hydrogen-ion concentration equal to 1.0×10^{-3} M (given pK _a = 4.74)?		
	(1) 4 L (2) 6 L (3) 5 L (4) 3 L ANSWER KEY		
	Que. 1 2 3 4 5 6 7		
	Ans. 3 2 4 2 2 2 4		

SALTS, TYPES OF SALT AND CONJUGATE THEORY

(A) SALT:

Salts are regarded as compounds made up of positive and negative ions. The positive part comes from a base while negative part from an acid. Salts are ionic compounds.

i.e. A compound formed by the combination of acid and base is known as salt.

Acid + Base \rightarrow Salt + Water

 $HCI + NaOH \rightarrow NaCI (Salt) + H_2O$ $\Delta H = -ve$

(B) TYPES OF SALT

(a) Normal/general salts: - The salts formed by the loss of all possible protons. (replaceable hydrogen ions as H⁺) are called normal salts. Such a salt does not contain either a replaceable hydrogen ions or a hydroxyl (OH⁻) group.

Ex.: NaCl, NaNO₃, K_2SO_4 , Ca₃(PO₄)₂, Na₂HPO₃, NaH₂PO₂ etc.

Types of general salts:

- (i) Strong Acid Strong Base (ii) Strong Acid Weak Base
- (iii) Weak Acid Strong Base (iv) Weak Acid Weak Base
- (b) Acid salts :- Salt formed by incomplete neutralisation of poly basic acids are called acid salts. Such salts still contain one or more replaceable hydrogen ions (H⁺).
- Ex. : NaHCO₃, NaHSO₄, NaH₂PO₄, Na₂HPO₄ etc.
- (c) Basic salts :- Salts are formed by incomplete neutralisation of poly acidic base are called basic salts. Such salts still contain one or more hydroxyl ion group.
- **Ex.** : Zn(OH)Cl, Mg(OH)Cl, Fe(OH)₂Cl, Bi(OH)₂Cl etc.
- (d) Double salts :- The addition compounds formed by the combination of two simple salts are termed double salts. Such salts are stable in solid state only.
- Ex. : FeSO4. (NH4)2SO4.6H2O,K2SO4 . Al2(SO4)3 . 24H2O etc.(Ferrous ammonium sulphate)(Potash alum)
- (e) Complex salts:- These are formed by combination of simple salts or molecular compounds or complex ions are present in salt molecules. These are stable in solid state as well as in solutions.

$$\underbrace{\operatorname{FesO}_{4} + 6\operatorname{KCN}}_{\text{simple salt}} \longrightarrow \operatorname{K}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}] + \operatorname{K}_{2}\operatorname{SO}_{4}$$

$$\operatorname{K}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}] \longrightarrow 4\operatorname{K}^{+} + [\operatorname{Fe}(\operatorname{CN})_{6}]^{-4}$$

$$\operatorname{CosO}_{4} + \operatorname{6NH}_{3} \longrightarrow [\operatorname{Co}(\operatorname{NH}_{3})_{6}]\operatorname{SO}_{4}$$

$$\operatorname{Complex salt}$$

$$\operatorname{Complex salt}$$

 $[Co(NH_3)_6]SO_4 \longrightarrow [Co(NH_3)_6]^{+2} + SO_4^{-2}$

(f) Mixed salts :- The salts which furnishes more than one cation or more than one anion when dissolved in water is called a mixed salt.

$$\begin{array}{cccc} \textbf{Ex.:} (i) & \textbf{H}_2 \textbf{SO}_4 & + \textbf{NaOH} & \longrightarrow & \textbf{NaHSO}_4 & + & \textbf{H}_2 \textbf{O} \\ & & \textbf{NaHSO}_4 & + & \textbf{KOH} & \longrightarrow & \textbf{NaKSO}_4 & \longrightarrow & \textbf{Na^+ K^+ SO}_4^{-2} \\ & & \textbf{acidic salt} & + & \textbf{base} & \longrightarrow & \textbf{NaKSO}_4 & \longrightarrow & \textbf{Na^+ K^+ SO}_4^{-2} \\ & & \textbf{(ii)} & \textbf{Ca} \swarrow & \textbf{(iii)} & \textbf{Na} \searrow \textbf{S} & \textbf{(iv)} & \textbf{NH}_4 & \rightarrow \textbf{PO}_4 \end{array}$$

(C) CONJUGATE ACID-BASE PAIR: Conjugate acid-base pairs me	ans difference between two species of only one H ⁺
or OH [−] ion.	
$CH_3 COOH \rightleftharpoons CH_3 COO^- + H^+$	
Weak acid Conjugate strong base	
$(K_a = 1.85 \times 10^{-5})$ or acceptor ion	
$NH_4OH \implies NH_4^+ + OH^-$	
Weak base Conjugate strong acid	
$(K_b = 1.85 \times 10^{-5})$ or acceptor ion	
HCI \rightleftharpoons H ⁺ + Cl ⁻	
Strong acid Conjugate	e weak base (spectator ion)
$(K_a \simeq \infty)$ Accepting	g tendency of H⁺ <u>~</u> 0
NaOH \rightleftharpoons Na ⁺ + OH ⁻	
Strong base Conjugate weak acid	
$(K_b \simeq \infty)$ (spectator ion)	
(D) DELATION DETINIEN CONJUCATE ACID DAGE DAID	
(D) RELATION BETWEEN CONJUGATE ACID-BASE PAIR :- Example - $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$	
•	
Acid conjugate base	
$NH_4OH \rightleftharpoons NH_4^+ + OH^-$	*
Base conjugate acid	
	CH₃COO [−]
acid conjugate base $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$ CH_3COO^-	
	+H₂O ⇐ CH₃COOH + OH⁻
$K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]} \dots (i) \qquad K_{b} = \frac{[CH_{3}COOH]}{[CH_{3}COOH]}$	COOH][OH [−]] CH₃COO [−]] (ii)
In both the reactions H_2O in excess quantity so active mass of	5
Now multiply the equation (i) and (ii)	
$K_a \times K_b = [H^+] [OH^-]$	
we know $[H^+] \times [OH^-] = K_w$ (Ionic product of water)	
$K_a \times K_b = K_w$	
Taking –log on both sides	
$pK_a + pK_b = pK_w$	
we know that for water at 25°C, $K_W = 10^{-14}$ or $pK_W = 14$	
So $K_a \times K_b = 10^{-14}$	
or $pK_a + pK_b = 14$	

Note : These relation are applicable for only conjugate acid-base pairs.

HYDROLYSIS OF SALTS

Salt hydrolysis is defined as the process in which water reacts with salt to form acid and base. i.e. change in concentration of H^+ and OH^- ions of water.

Water + Salt \rightleftharpoons Acid + Base

(A) Hydrolysis of strong acid and strong base [SA - SB] types of salt -

Ex. NaCl, BaCl₂, Na₂SO₄, KClO₄, BaSO₄, NaNO₃, KBr, KCl etc.

 $NaCl + H_2O \rightleftharpoons NaOH + HCl$

 $Na^{\scriptscriptstyle +} + Cl^{\scriptscriptstyle -} + H_2O \rightleftharpoons Na^{\scriptscriptstyle +} + OH^{\scriptscriptstyle -} + H^{\scriptscriptstyle +} + Cl^{\scriptscriptstyle -}$

 $H_2O \rightleftharpoons H^+ + OH^-$ (It is not salt hydrolysis)

- (i) Hydrolysis of salt of [SA SB] is not possible.
- (ii) Aqueous solution of these type of salt is neutral in nature. (pH = pOH = 7)
- (iii) pH of the solution is 7.
- (iv) No effect on litmus paper.

(B) Hydrolysis of strong acid and weak base [SA - WB] types of salt -

Ex. CaSO₄, NH₄Cl, (NH₄)₂SO₄, Ca (NO₃)₂, ZnCl₂, CuCl₂, CaCl₂, AgCl, AgI, AgNO₃ etc

 $NH_4CI + H_2O \rightleftharpoons NH_4OH + HCI$

WB SA

 $\mathsf{NH_4^+}\mathsf{+}\mathsf{CI^-}\mathsf{+}\mathsf{H_2O}\rightleftharpoons\mathsf{NH_4OH}\mathsf{+}\mathsf{H^+}\mathsf{+}\mathsf{CI^-}$

 $NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+$

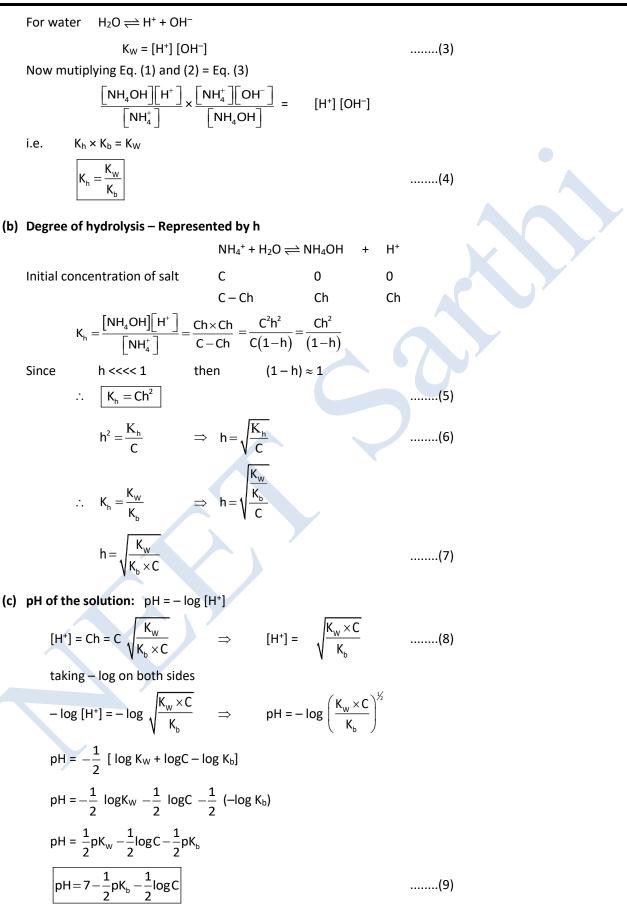
- (i) In this type of salt hydrolysis, cation reacts with H₂O therefore called as cationic hydrolysis.
- (ii) Solution is acidic in nature as [H⁺] is increased.
- (iii) pH of the solution is less than 7.
- (iv) Solution turns blue litmus paper red.

K_h = Hydrolysis constant

- K_W = lonic product of water
- K_a = Ionisation constant of acid
- K_b = lonisation constant of base
- h = Degree of hydrolysis
 - = Concentration of salt (concentration of ions)

(a) Relation between $K_h,\,K_W$ and K_b

С


$$B^+$$
 + $H_2O \rightleftharpoons BOH + H^+$

 $NH_4^+ + H_2O \Longrightarrow NH_4OH + H^+$

Hydrolysis constant [K_h]

$$K_{h} = \frac{[NH_{4}OH][H^{+}]}{[NH_{4}^{+}]} \qquad \dots \dots (1)$$

For weak Base $NH_4OH \rightleftharpoons NH_4^+ + OH^-$

(C) Hydrolysis of weak acid and strong base [WA - SB] types of salt -

Ex. CH₃ COONa, HCOONa, KCN, NaCN, K₂CO₃, BaCO₃, K₃PO₄ etc.

 $\mathsf{CH}_3 \operatorname{COONa} + \mathsf{H}_2 \mathsf{O} \quad \rightleftharpoons \quad \mathsf{CH}_3 \operatorname{COOH} + \mathsf{NaOH}$

 $CH_3 COO^- + Na^+ + H_2O \rightleftharpoons CH_3 COOH + Na^+ + OH^-$

 $CH_3COO^- + H_2O \implies CH_3COOH + OH^-$

- (i) In this type of salt hydrolysis, anion reacts with water therefore called as anionic hydrolysis.
- (ii) Solution is basic in nature as [OH⁻] increases.
- (iii) pH of the solution is greater than 7.
- (iv) Solution turns red litmus paper blue.

(a) Relation between K_h, K_W and K_a

 $CH_3 COO^- + H_2O \rightleftharpoons CH_3 COOH + OH^-$

$$K_{h} = \frac{\left[CH_{3}COOH\right]\left[OH^{-}\right]}{\left[CH_{3}COO^{-}\right]}$$

For weak acid

 $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$

$$K_{a} = \frac{\left[CH_{3}COO^{-}\right]\left[H^{+}\right]}{\left[CH_{3}COOH\right]}$$

For water

$$H_2O \rightleftharpoons H^+ + OH$$

 $K_W = [H^+] [OH^-]$

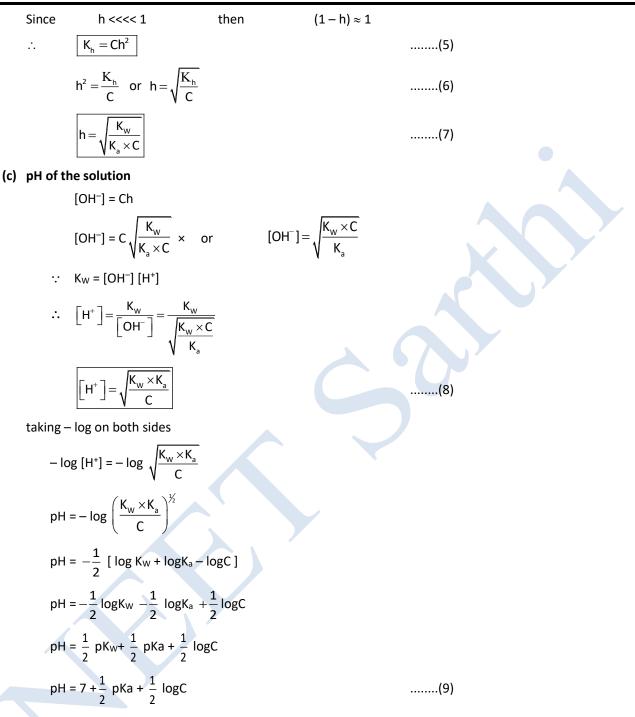
.....(3)

.....(2)

.....(1)

Now multiply eq. $(1) \times eq. (2) = eq. (3)$

$$\frac{[CH_{3}COOH][OH^{-}]}{[CH_{3}COO^{-}]} \times \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} = [H^{+}][OH^{-}]$$


$$K_{h} \times K_{a} = K_{W}$$

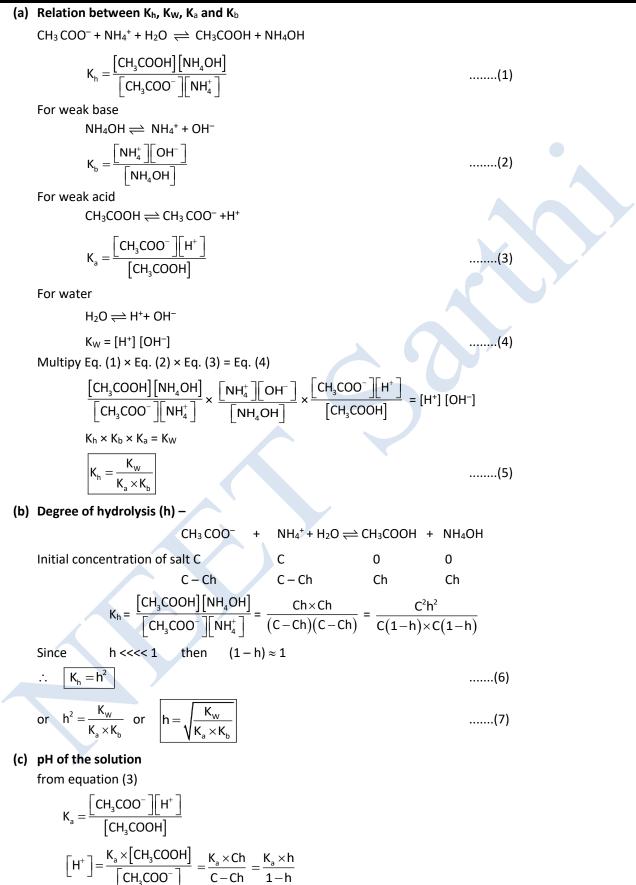
$$\boxed{K_{h} = \frac{K_{w}}{K_{a}}}$$
......(4)

(b) Degree of hydrolysis (h):

 $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$

JEE ⊮ Sarthi KOTA

(D) Hydrolysis of weak acid and weak base (WA – WB) type of SALT:


Ex. CH₃COONH₄, AgCN, NH₄CN, CaCO₃, [NH₄]₂CO₃, ZnHPO₃ etc.

 $CH_3COONH_4 + H_2O \rightleftharpoons CH_3COOH + NH_4OH$

 $CH_{3}COO^{-} + NH_{4}^{+} + H_{2}O \rightleftharpoons CH_{3}COOH + NH_{4}OH$

Solution is almost neutral but it may be acidic or basic depending upon the nature of acid and base and pH of the solution is near to 7.

(8)
(9)

Note: Degree of hydrolysis of weak acid and weak base [WA – WB] type salt does not depend on the concentration of salt.

For WA - WB types of salt :

	Terms	K a > K b	K b > K a	K a = K b
1.	Hydrolysis	Cationic-anionic	Anionic-cationic	Neutral hydrolysis
2.	Nature	Acidic	Basic	Neutral
3.	рН	pH < 7	pH > 7	pH = 7

Summary :

Type of salts	$K_h = \frac{K_w}{weak}$ At 25°C	$h = \sqrt{\frac{K_h}{C}}$	[H⁺]	рН
SA SB	N.A.	N.A.	10 ⁻⁷	7
WA SB	$K_{h} = \frac{K_{W}}{K_{a}}$	$h = \sqrt{\frac{K_w}{K_a \times C}}$	$\sqrt{\frac{K_{W} \times K_{a}}{C}}$	$7 + \frac{1}{2} \text{ pKa} + \frac{1}{2} \log C$
SA WB	$K_{h} = \frac{K_{W}}{K_{b}}$	$h = \sqrt{\frac{K_{w}}{K_{b} \times C}}$	$\sqrt{\frac{K_{w} \times C}{K_{b}}}$	$7 - \frac{1}{2} pK_b - \frac{1}{2} \log C$
WA WB	$K_{h} = \frac{K_{w}}{K_{a} \times K_{b}}$	$h = \sqrt{\frac{K_{w}}{K_{a} \times K_{b}}}$	$\sqrt{\frac{K_{w} \times K_{a}}{K_{b}}}$	$7 + \frac{1}{2} \text{ pKa} - \frac{1}{2} \text{ pK}_{b}$

If acid base are polybasic/polyacidic, then some more cases could arise.

- (i) Solution containing polyvalent anions (or cations) or weak polyprotic acids (or bases)
- (ii) The hydrolysis of these species with fake place in steps (just like dissociation of weak polyprotic acid)
- (iii) Out of different steps, generally first step hydrolysis dominates mainly because of two reason.
 - (a) The hydrolysis constant of second & farther steps in generally negligible in comparison to first step hydrolysis constant

(b) The second & further step hydrolysis will be suppressed in presence of ions produced due to first step hydrolysis (common ion effect)

For polyprotic acids like (H₂S, H₃PO₄, H₂CO₃, H₂CO₃, H₂C₂O₄)

We already know that the dissociation always takeplace in steps eg. H₃PO₄

 $H_3PO_4 \rightleftharpoons H^+ + H_2PO_4 -$

$$H_2PO_4 \rightleftharpoons H^+ + HPO_4^{2-}$$

$$HPO_4^{2-} \rightleftharpoons H^+ + HPO_4^{3-}$$

$$Ka_{1} = \frac{\left[H^{+}\right]\left[H_{2}PO_{4}^{-}\right]}{\left[H_{3}PO_{4}\right]} \dots (1)$$

$$Ka_{2} = \frac{\left[H^{+}\right]\left[HPO_{4}^{2-}\right]}{\left[H_{2}PO_{4}\right]} \dots (2)$$

$$Ka_{3} = \frac{\left[H^{+}\right]\left[HPO_{4}^{3-}\right]}{\left[HPO_{4}^{2-}\right]} \dots (3)$$

 $\int HPO_4^{2-}$

For all acid we always have Ka₁ >> Ka₂ >> Ka₃

$$HS^{-} \rightleftharpoons S^{2-} + H^{+}$$

$$C_1\alpha_1(1-\alpha_2)$$
 $C_1\alpha_1\alpha_2 \approx 0.1$

$$10^{-14} = \frac{C_1 \alpha_1 \alpha_1 \times 0.1}{C_1 \alpha_1 \left(1 - \alpha_2\right)}$$

Degree of dissociation of HS⁻ = α_2 = 10⁻¹³

$$[S^{2-}] = C_1 \alpha_2 \alpha_2 = 10^{-1} \times 10^{-6} \times 10^{-13} = 10^{-20} \text{ M}$$

$$[HS^{-}] \approx C_1 \alpha_1 = 10^{-1} \times 10^{-6} = 10^{-7} M$$

H⁺ ion can be calculate from 1st step only because (H⁺) from 2nd & 3rd step can be neglected as

(a) Ka₁ >> ka₂ >> Ka₃

(b) [H⁺] from 1st dissociation will suppress the dissociation oof 2nd & 3rd step Now from the hydrolysis of polyvalent ions (from salt like K₃PO₄, Na₂CO₃, ZnSO₄, FeCl₃,(NH₄)₂ C₂O₄ or lons like PO₄^{3–}, CO₃^{2–}, Zn⁺², fe⁺³ etc)

Deriv

vation
$$PO_4^{3-} + H_2O \rightleftharpoons HPO_4^{2-} + PH^-$$

 $t = 0 C 0 0$
 $t = eq C(1-h) Ch Ch$
 $Kh_1 = \frac{OH^-[HPO_4^{2-}]}{PO_4^{3-}} \dots (4)$
 $HPO_4^{2-} + H_2O \rightleftharpoons H_2PO_4^{2-} + OH^-$

 $HPO_4^{2-} + H_2O$ H₂PO₄²

$$Kh_{2} = \frac{\left[OH^{-}\right]\left[HPO_{4}^{-}\right]}{\left[HPO_{4}^{2-}\right]} \dots (5)$$

 $H_2PO_4^- + H_2O$ $H_3PO_4 + OH^ \rightleftharpoons$

$$\mathsf{Kh}_{3} = \frac{\left[\mathsf{OH}^{-}\right]\left[\mathsf{H}_{3}\mathsf{PO}_{4}\right]}{\left[\mathsf{H}_{2}\mathsf{PO}_{4}^{-}\right]} \dots (6)$$

 H_2O $H^+ + OH^ \rightleftharpoons$

Kw = [H⁺][OH[−]] (7)

From above equations, we get

 $Ka_1 \times Kh_3 = Iw$; $Ka_2 \times Kh_2 = kw$;

 $Ka_3 \times Kh_1 = Kw$

Numerically Kh₁ >> Kh₂ >> Kh₃

Generally, P^H is calculated only using the first step hydrolysis

$$\begin{split} \mathsf{K}\mathsf{h}_1 &= \frac{\mathsf{C}\mathsf{h} - \mathsf{C}\mathsf{h}}{\mathsf{C}(1 - \mathsf{h})} = \frac{\mathsf{C}\mathsf{h}^2}{1 - \mathsf{h}} \\ & 1 - \mathsf{h} \approx 1 \\ \mathsf{K}\mathsf{h}_1 &= \mathsf{C}\mathsf{h}_2 \ \& \ \mathsf{h} = \sqrt{\frac{\mathsf{K}\mathsf{h}_1}{\mathsf{C}}} \\ [\mathsf{O}\mathsf{H}^-] &= \mathsf{C}\mathsf{h} = \sqrt{\mathsf{K}\mathsf{h}_1} \times \mathsf{C} \\ [\mathsf{H}^+] &= \frac{\mathsf{K}\mathsf{w}}{\left[\mathsf{O}\mathsf{H}^-\right]} = \mathsf{K}\mathsf{w}\sqrt{\frac{\mathsf{K}\mathsf{a}_3}{\mathsf{K}\mathsf{w} \times \mathsf{C}}} = \sqrt{\frac{\mathsf{K}\mathsf{w} \times \mathsf{K}\mathsf{a}_3}{\mathsf{C}}} \\ \mathsf{So, pH} &= \frac{1}{2} \left[\mathsf{p}\mathsf{K}_w + \mathsf{p}\mathsf{K}\mathsf{a}_3 + \mathsf{log\,c}\right] \end{split}$$

If $h \ge 0.1$ we should solve quadratic equation

Solution containg amphiprotic anion (or cation)

Anion of NaHCO₃, NaHS etc can undergo ionization to from H⁺ & can also undergo hydrolysis to form OH⁻

(1) $HCO_3^- + H_2O \xleftarrow{\text{ionisation}} CO_3^{2-} + H_3O^+$; Ka₂

(2)
$$HCO_3^- + H_2O \xrightarrow{hydrolysis} H_2CO_3 + OH^-; \frac{Kw}{Ka}$$

Taking the assumption :- Degree of ionization (α) = Degree of hydrolysis (h) or $[CO_3^{2-}] = [H_2CO_3]$ Calculation of pH can be done by relation :-

pH(HCO₃⁻) = $\left(\frac{pKa_1 + pKa_2}{2}\right)$ = Average of PKa values of parent acid involved in ionization & hydrolysis

reaction

Similarly for $H_2PO_4^-$ & HPO_4^{2-} amphiprotic anions

$$pH(H_2PO_4^{-}) = \left(\frac{pKa_1 + pKa_2}{2}\right) and$$
$$pH(HPO_4^{2-}) = \left(\frac{pKa_2 + pKa_3}{2}\right)$$

Where Ka₁, Ka₂ & Ka₃ are dissociation constant of H₃PO₄.

Ex.13 How many grams of NH₄Cl should be dissolved per litre of solution to have a pH of 5.13?

$$pH = \frac{1}{2} [pK_{w} - \log c - pK_{b}]$$

10.26 = 14 - log C - 4.74
C = 10⁻¹ M
[NH₄Cl] = 10⁻¹ M
W_{NH4Cl} = 10⁻¹ × 53.5 g L⁻¹ = 5.35 g L⁻¹

UILI								RUIA
Ex.14	Calculate the pH to de	gree of hydi	olysis of C).01 M so	olution o	f NaCN,	Ka for ⊦	ICN is 6.2 × 10 ⁻¹²
Sol.	NaCN = Salt of SB + w	A						
	$CN^- + H_2O \rightleftharpoons HCN + O$)H−						
	$k_{\rm h} = \frac{[\rm HCN][\rm OH]}{[\rm CN^-]} = \frac{\rm k}{\rm k}$	$w = 10^{-14}$	÷					
	$\mathbf{K}_{\mathrm{h}} = \frac{1}{[\mathrm{CN}^{-}]} = \frac{1}{\mathrm{K}}$	$\frac{1}{6.2 \times 10^{-10}}$) ⁻¹²					
	Let x mole of salt und	ergo hydrol	ysis					
	$[CN^{-}] = 0.01 - x \approx 0.01$							
	[HCN] = x							
	[OH ⁻] = x							
	$k_{\rm h} = \frac{\mathbf{x} \cdot \mathbf{x}}{0.01} = 1.6 \times 10^{-3}$							
	$x^2 = 1.6 \times 10^{-5} \Longrightarrow x = 4$	× 10 ⁻³						
	$[OH^{-}] = x = 4 \times 10^{-3}$							
	$[H_{3}O^{+}] = \frac{kw}{[OH^{-}]} = \frac{1}{4}$	$)^{-14}$ - 0.25	×10 ⁻¹¹					
	$[\Pi_3 O] = \frac{1}{[OH^-]} = \frac{1}{4}$	$10^{-3} = 0.25$	×10					
	$pH = -\log(0.25 \times 10^{-5})$	¹) = 11.602						
	Degree of hydrolysis	$x = \frac{4 \times 1}{2}$	$\frac{10^{-3}}{-3} = 4 \times$	10^{-1}				
	Degree of flydrolysis	0.01 0	.01	10				
		V		ACTICE	SECTIO	N-02		
Q.1	Given, HF + H ₂ O $=$	$\stackrel{\kappa_a}{\longrightarrow}$ H ₃ O ⁺ -	+ F					
	F ⁻ + H ₂ O ≂	$\xrightarrow{K_b}$ HF + C	H-					
	Which relation is co	rect?						
	(1) K _b = K _w	(2) K _b	= <u>1</u>		(3) K _a ×	K _b = K _w		(4) $\frac{K_a}{K_a} = K_w$
	(_,	(_/5	K _w		(-) - u			K, K ^b
Q.2	The correct stateme	nts are:						
	(1) CH ₃ COOH is a weak acid				(2) NH ₄ Cl gives an alkaline solution in water			
	(3) CH ₃ COONa gives an acidic solution in water			water	(4) Na ₂ S	SO ₄ gives	s basic s	olution in water
Q.3	Calculate pH of 0.10	M KCN solu	ition at 25	°C. For H	ICN, K _a =	6.2 × 10) ⁻¹⁰ .	
	(1) 3.9	(2) 11.	1		(3) 7			(4) None
Q.4	Calculate the pH of	0.10 M solu	tion of NH	₄Cl. The	dissociat	ion cons	stant (K	₀) of NH₃ is 1.6 × 10 ^{−5} .
	(1) 5.1	(2) 8.9			(3) 7			(4) 3
Q.5	A weak acid HA (k _a =	10 ⁻⁵) comb	ined with	strong b	ase to pr	oduce s	alt AB. F	ind out the equilibrium constant for
	this salt formation.				-			
	(1) 10 ⁻⁹	(2) 10 ⁹)		(3) 10 ⁻⁵			(4) 10 ⁵
Q .6		-		um hydro	oxide are	4.76 an	d 4.75 r	espectively. Calculate the hydrolysis
	constant of ammonium acetate at 298 K							
	(1) 1.25 × 10 ^{−5}	(2) 3.2	5 × 10 ⁻⁵		(3) 6 × 1	-4		(4) 2×10^{-4}
Q.7	Which of the follow			kimum aı		•	rolysis	
-	(1) kCl (2) CH ₃ COONa				(3) HCO	ONa		(4) PhONa
-	(1) KCI	(2) 011	3000110					()
	(1) KCI		3000110	ANSW	ER KEY			
	(1) KCI	Que. 1		ANSW 3	VER KEY 4	5	6	7

SOLUBILITY AND SOLUBILITY PRODUCT (Ksp)

(A) SOLUBILITY

(a) Definition

(i) At constant temperature the maximum number of moles of solute which can be dissolved in a solvent to obtain 1 litre of solution (i.e. saturated solution) is called solubility.

 $S(M) = \frac{\text{Number of moles of solute}}{\text{Volume of solution (L)}}$

$$\frac{x}{M_w \times V_L} \qquad \text{mol } L^{-1}$$

(ii) The maximum weight of solute which can be dissolved in a given amount of solvent is known as solubility.

S =

(b) Important points :-

Solubility does not depend on amount of substances and volume of solution where as depends on the following –

- (i) Temperature
- (ii) Presence of common ion
- (iii) Nature of solvent

(Molecular wt. of AgCl = 143.5)

(Molecular wt. of BaSO₄ = 233)

• Solubility can be expressed in terms of molarity.

(B) SOLUBILITY PRODUCT(Ksp) :

(a) At constant temperature product of concentrations of ions in a saturated solution of substance is called solubility product of that substance. (Saturated solution is that solution in which further dissolution of even a small amount of salt is not possible).

Ex. (i)	Let solubility of AgCl	AgCI ≓	Ag⁺ + Cl⁻	
	is S mol L ⁻¹	а	0	0
	After saturation	a — S	S	S
	According to L.O.M.A.			

Solubility product at saturation in terms of concentration of ions $K_{sp} = [Ag^+] [CI^-]$ Solubility product in terms of solubility $K_{sp} = (S)$ (S)

 $\mathbf{K} = \mathbf{S}^2$

Image: Similar conditionImage: Similar conditionEx. (ii)Ksp for CaCl2CaCl2
$$\rightleftharpoons$$
 CaCl2 \rightleftharpoons Ca⁺² + 2Cl⁻Initiallya00Let solubility of CaCl2a - SSis S mol L⁻¹Solubility product in terms of concentration of ions Ksp = [Ca⁺²] [Cl⁻]²In terms of solubilityK_{sp} = (S) (2S)² $K_{sp} = 4S^3$ Ex. (iii)Ksp for AlCl3AlCl3 \rightleftharpoons Al⁺³ + 3Cl⁻InitiallyaLet solubility of AlCl3a - SS mol L⁻¹Solubility product in terms of concentration of ionsK_{sp} = [Al⁺³] [Cl⁻]³In terms of solubilityK_{sp} = (S) (3S)³ $[K_{sp} = 27S^4]$

(b) General form $AxBy \rightleftharpoons xA^{+y} + yB^{-x}$ 0 0 а a – S xS yS $K_{sp} = [A^{+y}]^x [B^{-x}]^y$ $= [xs]^{x} \times [ys]^{y} = x^{x}.s^{x}.y^{y}.s^{y}$ $K_{sp} = x^{x} y^{y} S^{(x+y)}$ **Ex.** (i) $Al_2(SO_4)_3$ $K_{sp} = 2^2 \times 3^3 \times (S)^{2+3} = 4 \times 27 \times S^5 = 108 S^5$ (ii) Na₂ KPO₄ $K_{sp} = 2^2 \times 1^1 \times 1^1 (S)^{2+1+1} = 4S^4$ (iii) NaKRbPO₄ $K_{sp} = 1^1 \times 1^1 \times 1^1 \times 1^1 \times (S)^{1+1+1+1} = S^4$

APPLICATION OF SOLUBILITY PRODUCT (Ksp)

(A) TO FIND OUT THE SOLUBILITY (S) :

- (i) Ksp of AB (Mono-mono, di-di, tri-tri valency) type salt -
- Ex. NaCl, BaSO₄, CH₃COONa, CaCO₃, NaCN, KCN, NH₄CN, NH₄Cl etc.

$$AB(s) \iff A^{+} + B^{-}$$

$$1 \qquad 0 \qquad 0$$

$$1 \qquad s \qquad s$$

$$K_{sp} = [A^{+}] [B^{-}]$$

$$K_{sp} = s^{2} \quad \text{or} \quad s = \sqrt{K_{sp}}$$

- (ii) Ksp of AB₂ or A₂B (Mono-di or di-mono valency) type salt -
- **Ex.** CaCl₂, CaBr₂, K₂S, (NH₄)₂SO₄, K₂SO₄, K₂CO₃ etc.

$$AB_{2}(s) \implies A^{+2} + 2B^{-1}$$

$$1 \qquad 0 \qquad 0$$

$$1 \qquad s \qquad 2s$$

$$\zeta_{sp} = [A^{+2}] [B^{-}]^{2}$$

$$\zeta_{sp} = s \times (2s)^{2} = s \times 4s^{2} = 4s^{3}$$

$$S = \left(\frac{K_{sp}}{4}\right)^{\frac{1}{2}}$$

(iii) Ksp of AB₃ or A₃B (Mono-tri or tri-mono valency) type salt -

Ex. FeCl₃, AlCl₃, K₃PO₄ etc.

$$AB_{3}(s) \rightleftharpoons A^{+3} + 3B^{-}$$

$$1 \qquad 0 \qquad 0$$

$$1 \qquad s \qquad 3s$$

$$K_{sp} = \left[A^{+3}\right] \left[B^{-}\right]^{3} = s \times (3s)^{3} = 27s^{4}$$

$$s = \left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}$$

(iv) Ksp of A₂B₃ or A₃B₂ (Di-tri or tri-di valency) type salt –

Ex. Al₂(SO₄)₃, Ba₃(PO₄)₂ etc. $A_2B_3(s) \rightleftharpoons 2A^{+3}$ + $3B^{-2}$ 1 0 0 1 2s 3s $K_{sn} = [A^{+3}]^2 [B^{-2}]^3 = 2s \times 2s \times 3s \times 3s \times 3s = 108s^5$

$$s = \left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}$$

(B) COMMON ION EFFECT ON SOLUBILITY:

Important point:- Solubility of substances always decreases in the presence of common ion. Ex. (i) Find out the solubility of AgCl in the presence of C NaCl solution?

AgCl \rightleftharpoons Ag⁺ + Cl⁻ S (Let solubility of AgCl is S mol L^{-1}) S S $K_{sp} = [Ag^+] [Cl^-]$ $K_{sp} = S^2$ In NaCl solution $NaCl \longrightarrow Na^+ + Cl^-$ С C [Cl[−]] = C С

Let solubility of AgCl in the presence of NaCl solution is S' mol L⁻¹.

 $AgCI \rightleftharpoons Ag^+ + CI^-$

S' S' S'+C

According to L.O.M.A.

 $K_{sp} = [Ag^{+}]' [Cl^{-}]'$ $K_{sp} = S'(S' + C) = S'^{2+}S'C$ (Neglecting the higher power terms of S') $K_{sn} = S'C$ $S' = \frac{K_{sp}}{K_{sp}}$

Ex. (ii) Find out the solubility of CaCl₂ solution in the presence of C NaCl solution?

```
CaCl_2 \rightleftharpoons Ca^{+2} + 2Cl^{-}
       S
                     S
                                   25
                                             [Let solubility of CaCl<sub>2</sub> is S mol L<sup>-1</sup>]
     K_{sp} = [Ca^{+2}] [Cl^{-}]^2
           =4S^{3}
     For NaCl solution
     NaCl \longrightarrow Na<sup>+</sup>
                                 + Cl⁻
                           C [Cl⁻] = C
      С
                    С
Let solubility of CaCl<sub>2</sub> in the presence of NaCl solution is S' mol L<sup>-1</sup>.
     CaCl_2 \rightleftharpoons Ca^{+2} +
                                  2CI-
     S'
                    S'
                                  2S'+C
According to L.O.M.A.
     K_{sp} = [Ca^{+2}]' [Cl^{-}]'^{2}
     K_{sp} = S' (2S' + C)^2 = S' (4S'^2 + 4S'C + C^2)
     K_{sp} = 4S'^3 + 4S'^2C + S'C^2 (Neglecting the higher power terms of S')
```

CHEMISTRY

Ex. (iii) Find out the solubility of NaCl in the presence of C CaCl₂ solution? $CaCl_2 \longrightarrow Ca^{+2} + 2Cl^{-}$ С С 2C Let solubility of NaCl in the presence of $CaCl_2$ solution is S' mol L⁻¹. $NaCl \rightleftharpoons Na^{+} +$ Cl⁻ S' S' S'+2C According to L.O.M.A. $K_{sp} = [Na^+]^1 [Cl^-]^1$ $K_{sp} = S' (S' + 2C) = S'^2 + 2S'C$ (Neglecting the higher power terms of S')

$$S' = \frac{K_{sp}}{2C}$$

(C) GROUP PRECIPITATION :

(i)
$$Q_{sp} < K_{sp} \Rightarrow Unsaturated$$

(ii) $Q = K \Rightarrow Saturated$

(ii) $Q_{sp} = K_{sp} \implies \text{Saturated}$

(iii) $Q_{sp} > K_{sp} \implies$ Super saturated \Rightarrow precipitation

Group	Group reagent	Basic radical	Composition and colour of precipitate
Zero	NaOH or Ca(OH) ₂ , heat if required	NH_4^+	Ammonia gas is evolved
		Ag ⁺	AgCl ; White
1	Dil HCl	Hg_2^{2+}	Hg ₂ Cl ₂ ; White
		Pb ²⁺	PbCl ₂ ; White
2 (A)	H ₂ S in presence of dil HCl (insoluble in YAS)	Hg ²⁺	HgS ; Black
		Pb ²⁺	PbS ; Black
		Bi ³⁺	Bi ₂ S ₃ ; Black
		Cu ²⁺	CuS ; Black
		Cd ²⁺	CdS ; Yellow
2 (B)	H ₂ S in presence of dil HCl (Soluble in YAS)	As ³⁺	As ₂ S ₃ ; Yellow
		Sb ³⁺	Sb ₂ S ₃ ; Orange
		Sn ²⁺	SnS ; Brown
		Sn ⁴⁺	SnS ₂ ; Yellow
3	NH ₄ OH in presence of NH ₄ Cl	Fe ³⁺	Fe(OH) ₃ ; Reddish brown
		Cr ³⁺	Cr(OH)₃ ; Green
		Al ³⁺	Al(OH) ₃ ; Gelatinous white
4	H_2S in presence of NH_4OH and NH_4 Cl	Zn ²⁺	ZnS ; Dirty white
		Mn ²⁺	MnS; Buff (or light pink)
		Co ²⁺	CoS ; Blak
		Ni ²⁺	NiS ; Black
5	$(NH_4)_2$ CO ₃ in presence of NH_4OH	Ba ²⁺	BaCO₃ ; White
		Sr ²⁺	SrCO ₃ ; White
		Ca ²⁺	CaCO ₃ ; White
6	Na ₂ HPO ₄ in presence of NH ₄ OH	Mg ²⁺	Mg(NH4) PO4 ; White

JEE ∰ Sarthi KOTA

Extra Key Points :

(a). $Hg^{+1}(us) \rightarrow Unstable$ in aqueous solution. [Stable in dimer form $(Hg_2^{+2}) \Rightarrow Hg_2Cl_2$]

 $Hg_{2}Cl_{2} \rightleftharpoons Hg_{2}^{+2} + 2Cl^{-}$ $S \qquad S \qquad 2S$ $K_{sp} = [Hg_{2}^{+2}] [Cl^{-}]^{2} = (S) (2S)^{2}$ $\boxed{K_{sp} = 4S^{3}}$

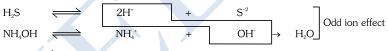
(b). $Hg^{+2}(ic) \rightarrow HgCl_2 \rightarrow stable in aqueous solution$

 $HgCl_{2} \iff Hg^{+2} + 2Cl^{-}$ $S \qquad S \qquad 2S$ $K_{sp} = 4S^{3}$

(c). For precipitation of II group, H₂S gas is passed in acidic medium to decrease S⁻² concentration by common ion effect. So that ionic product of cations of group II and S⁻² ions exceed the solubility product of their corresponding metal sulphides. Therefore, only the cations of group II gets precipitated. But the sulphides of the cation of the other groupes (III, IV & V) are not precipitated under these conditions because their solubility products are quite high.

When H₂S gas is directly passed through solution then IVth group is also precipitated with IInd group.

 $H_2S \rightleftharpoons 2H^+ + S^{-2}$


 $Ksp_{II} < Ksp_{IV} <$ [radicals of II^{nd} and IV group] [S⁻²]

When H_2S gas pass in acidic medium [H⁺] then only IInd group radicals are precipitated.

 $H_2S \rightleftharpoons 2H^+ + S^{-2}$

Ksp_{II} < [radicals of IInd and IV group] $[S^{-2}] < Ksp_{IV}$

- (d). For precipitation of group III, NH₄OH is added in the presence of NH₄Cl to decrease the concentration of OH⁻ by common ion effect so ionic product of cations of group III and hydroxides ions exceed the solubility product of their corresponding metal hydroxides and only group III cations will precipitated. On the other hand cations of group IV, V and VI, which require large concentration of OH⁻ due to their high solubility product, will not be precipitated.
- (e). In IV group, H₂S gas is passed in basic medium to increase S⁻² ion concentration by odd ion effect, so that the ionic product of cations of group IV and S⁻² ions exceed the solubility product of their corresponding metal sulphide and hence gets precipitated.

So [S⁻²]↑

 $Ksp_{IV} < [Radicals of group IV] [S^{-2}]$

(f). In V group, order of K_{sp} and precipitation is – BaCO₃ < SrCO₃ < CaCO₃

Additional Information

```
(A) Various forms of K<sub>W</sub>
```

- (a) $K_W = [H^+] [OH^-]$ for water $[H^+] = [OH^-]$
- (b) $K_W = [H^+]^2$
- (c) $K_W = [OH^-]^2$
- (d) $K_W = [H_3O^+] [OH^-]$ (e) $K_W = [H_3O^+]^2$ { $[H_3O^+] = [H^+]$ } Hydronium Proton

ion

(B) Isohydric solution -

If different–different solution has same pH are called isohydric solution.

Note :- Isohydric conditions for two given weak acids HA₁ and HA₂ which has concentration C₁ and C₂ and ionisation constants are Ka₁ and Ka₂ respectively.

Then $[H^+]_1 = \sqrt{Ka_1C_1}$ and $[H^+]_2 = \sqrt{Ka_2C_2}$

According to given condition for isohydric solution pH of different solution is same.

Hence $[H^+]_1 = [H^+]_2$

$$\sqrt{Ka_1C_1} = \sqrt{Ka_2C_2}$$

$$\boxed{Ka_1C_1 = Ka_2C_2} \text{ or } \boxed{\frac{Ka_1}{V_1} = \frac{Ka_2}{V_2}} \quad \because \quad \boxed{C \propto \frac{1}{V}}$$

(C) Strength of Acids and Bases :-

We known Strength of acid ∞ [H⁺]

If there are two weak acids HA_1 and HA_2 which has concentration C_1 and C_2 , degree of ionisation α_1 and α_2 and ionisation constants Ka_1 and Ka_2 respectively then ratio of their strength of acids.

We know $[H^+] = C\alpha = \sqrt{KaC}$

So
$$\frac{\text{Strength of weak acidHA}_1}{\text{Strength of weak acid HA}_2} = \frac{[\text{H}^+]_1}{[\text{H}^+]_2} = \frac{\text{C}_1\alpha_1}{\text{C}_2\alpha_2} = \frac{\sqrt{\text{Ka}_1\text{C}_1}}{\sqrt{\text{Ka}_2\text{C}_2}}$$

if $C_1 = C_2$

 $\frac{\text{Strength of weak acid HA}_{1}}{\text{Strength of weak acid HA}_{2}} = \sqrt{\frac{\text{Ka}_{1}}{\text{Ka}_{2}}}$

Thus the relative strength of two acids of equimolar concentration can be compared by taking square root of the ratio of their ionisation constants.

(D) Resultant concentration :- When two non reactive electrolytes AB and CD which has concentration C_1 and C_2 and volume V_1 and V_2 respectively are mixed in one container then total volume of container is $(V_1 + V_2)$ and resultant concentration of each electrolyte is-

Resultant concentration of AB
$$\Rightarrow$$
 C'₁ = $\frac{C_1V_1}{V_1 + V_2}$

Resultant concentration of CD \Rightarrow C'₂ = $\frac{C_2 V_2}{V_1 + V_2}$

If volume of both electrolytes are equal i.e. $V_1 = V_2 = V$

then resultant concentration of each electrolyte is becomes half of initial concentration.

$$C'_{1} = \frac{C_{1}V}{V+V} = \frac{C_{1}}{2}, \qquad C'_{2} = \frac{C_{2}V}{V+V} = \frac{C_{2}}{2}$$

 $C'_{1} = \frac{C_{1}}{2} \qquad \text{and} \qquad C'_{2} = \frac{C_{2}}{2}$

Note : 'n' different solutions of non reactive different electrolytes are mixed in equal volume then resultant concentration of each electrolyte is 1/n times.

JEE ⊮ Sarthi KOTA

Sol.

Sol.

Ex.15 The solubility of $BaSO_4$ in water is $1.07 \times 10^{-5} mol^{-3}$ estimate its solubility product

Solubility equilibrium for BaSO₄ is

$$\begin{split} BaSO_{4_{(s)}} &\rightleftharpoons Ba_{(eq)}^{+2} + SO_{4(eq)}^{2-} \\ S &= 1.07 \times 10^{-5} m \\ K_{sp} &= (s)^2 = (1.07 \times 10^{-5})^2 = 1.145 \times 10^{-10} \end{split}$$

Ex 16 The solubility product of AgBr is 5.2×10^{-13} , calculate its solubility in mol dm⁻³ and g dm⁻³.

Sol. AgBr_(s) \Longrightarrow Ag⁺_(aq) + Br⁻_(aq)

0.04V²

$$K_{sp} = (s)^2$$

 $S = \sqrt{K_{sp}} = \sqrt{5.2 \times 10^{-13}} = 7.2 \times 10^{-7} \text{ mol dm}^{-3}$

0

2

Ans.

3

2

4

 $CaCl_2 + Na_2SO_4 \rightarrow CaSO_4 + 2NaCl_4$

Suppose VmL of both are mixed

0.0008V

The solubility in g dm⁻³ = molar solubility × molar mass = $7.2 \times 10^{-7} \times 107.0 = 1.35 \times 10^{-4}$ g dm⁻³

Ex. 17 Equal volume of 0.04M CaCl₂ & 0.0008M Na₂SO₄ are mixed. Will a precipitate form ? K_{sp} for CaSO₄ = 2.4 × 10⁻⁵

$$\begin{bmatrix} Ca^{2^{2}} \end{bmatrix} = \frac{0.04v}{2v}; \\ \begin{bmatrix} SO_{4}^{2^{2}} \end{bmatrix} = \frac{0.0008M}{2v} \\ \therefore \begin{bmatrix} Ca^{2^{2}} \end{bmatrix} \begin{bmatrix} SO_{4}^{2^{2}} \end{bmatrix} = \frac{0.0008V}{2v} \\ \frac{2}{2v} \\ \end{bmatrix} = 8 \times 10^{-6} \\ \text{Thus } \begin{bmatrix} Ca^{2^{2}} \end{bmatrix} \begin{bmatrix} SO_{4}^{2^{2}} \end{bmatrix} \text{ in solution < KsP} \\ \therefore CaSo_{4} \text{ will not precipitate.} \\ \hline \textbf{PRACTICE SECTION-O3} \\ \textbf{Q.1} \quad \text{The relative strength of two weak acids HCOOH } (K_{8} = 2 \times 10^{-4}) \text{ and HF} (K_{8} = 6.6 \times 10^{-4}) \text{ is :} \\ (1) 0.30 & (2) 0.55 & (3) 3.33 & (4) 1.82 \\ \textbf{Q.2} \quad \text{The solubility product of AgCl is 4.0 \times 10^{-10} \text{ at } 298 \text{ K. The solubility of AgCl in 0.04m CaCl2 will be? \\ (1) 2 \times 10^{-5} \text{ m} & (2) 1 \times 10^{-4} \text{ m} & (3) 5 \times 10^{-9} \text{ m} & (4) 2.2 \times 10^{-4} \text{ m} \\ \textbf{Q.3} \quad \text{On adding 0.1 M solution each of Ag', Ba^{2^{2}}, Ca^{2^{2}} \text{ ions in a Na}_{2}SO_{4} \text{ solution species first precipitated is } \\ (K_{ep} BaSO_{4} = 10^{-11}, K_{sp} CaSO_{4} = 10^{-6}, K_{sp} Ag_{2}SO_{4} = 10^{-5} \\ (1) Ag_{2}SO_{4} & (2) BaSO_{4} & (2) BaSO_{4} & (3) CaSO_{4} & (4) all of these \\ \hline \textbf{Q.4} \quad Equal volumes of the following Ca^{2^{2}} and F^{-} solutions are mixed. In which of the solutions will precipitation occur? (K_{sp} of CaF_{2} = 1.7 \times 10^{-10}) \\ (1) 10^{-2} \text{ M Ca}^{2^{2}} + 10^{-3} \text{ M F^{-}} \\ (3) 10^{-4} \text{ M Ca}^{2^{2}} + 10^{-3} \text{ M F^{-}} \\ (4) 10^{-2} \text{ M Ca}^{2^{2}} + 10^{-3} \text{ M F^{-}} \\ (3) 10^{-4} \text{ M Ca}^{2^{2}} + 10^{-3} \text{ M F^{-}} \\ (4) 10^{-2} \text{ M Ca}^{2^{2}} + 10^{-3} \text{ M F^{-}} \\ (3) 10^{-4} \text{ M Ca}^{2^{2}} + 10^{-3} \text{ M F^{-}} \\ (4) 10^{-2} \text{ M Ca}^{2^{2}} + 10^{-3} \text{ M F^{-}} \\ (3) 10^{-4} \text{ M Ca}^{2^{2}} + 10^{-3} \text{ M F^{-}} \\ (4) 10^{-2} \text{ M Ca}^{2^{2}} + 10^{-3} \text{ M F^{-}} \\ (3) 10^{-4} \text{ M Ca}^{2^{2}} + 10^{-3} \text{ M F^{-}} \\ (4) 10^{-2} \text{ M Ca}^{2^{2}} + 10^{-3} \text{ M F^{-}} \\ (5) \text{ Solubility product constants (K_{sp}) of salts of types MX, MX_{2} at M_{3} at temperature T are 4.0 \times 10^{-6} , 3.2 \times 10^{-14} \\ \text{ and } 2.7 \times 10^{-15} \text{ M } \\ (2) M_{3} \times MX_{2} > MX_{2} & (3) MX_{2} > MX_{2} \times MX_{2} & MX_{2} \\ \textbf{M}_{4} \text{ M}_{3} \times MX_{2} \times MX_{2} \\ \textbf{M}$$

3

4

4

JEE Sarthi KOTA

рΗ

INTRODUCTION

pH of some important substance :-						
(i) Blood	\longrightarrow	7.4				
(ii) Tear	\longrightarrow	7.4				
(iii) Gastric Juice	\longrightarrow	1 to 3				
(iv) Soft drink	\longrightarrow	2 to 4				
(v) Acidic rain	\longrightarrow	6				
(vi) Milk	\longrightarrow	6.3 to 6.6				
(vii) Water	\longrightarrow	7				

TYPES OF pH

(i) pH of SA and SB.

[H⁺] = C, [OH[−]] = C

(ii) pH of WA and WB.

 $[H^+]$ = Clpha , $[OH^-]$ = Clpha

(Consider H^+ & OH^- of H_2O also)

- (iii) pH of very dilute solution.
- (iv) pH of salt solution.

(a)	SA	SB	Туре	Salt	(always 7)
(b)	SA	WB	Туре	Salt	(< 7)
(c)	WA	SB	Туре	Salt	(> 7)
(d)	WA	WB	Туре	Salt	(Almost 7)

(v) pH of mixture of acid and base.

(a) pH of mixture of acids :

 $N_1V_1 + N_2V_2 + N_3V_3 + \dots = NV$

V = Volume of final solution = $V_1 + V_2 + V_3 + \dots$

N = Normality of final solution = $[H^+]$ in final solution.

(b) pH of mixture of base :

 $N_1V_1 + N_2V_2 + N_3V_3 + \dots = NV$

V = Volume of final solution = $V_1 + V_2 + V_3 + \dots$

- N = Normality of final solution = $[OH^{-}]$ in final solution.
- (c) pH of mixture of acids and bases:

For acid:

 $N_1V_1 + N_2V_2 + N_3V_3 + \dots = (NV)Acid$

For base:

 $N_1V_1 + N_2V_2 + N_3V_3 + \dots = (NV)Base$

- If (NV)Acid > (NV)Base then solution is acidic. NV = (NV)Acid - (NV)Base and [H⁺] = N
- If (NV)Base > (NV)Acid then solution is basic. NV = (NV)Base - (NV)Acid and $[OH^{-}] = N$

BUFFER SOLUTION

INTRODUCTION

A. Definition:

Those solution which have resistive nature for pH change are called Buffer Solution.

- B. Properties of buffer solution:
- (i) pH of buffer solution never depends on their concentration and dilution. (water add or escape).
- (ii) When some amount of strong acid and strong base are mixed in buffer solution then pH of buffer solution is almost unchange.
- **Note :-** Change in pH of a solution is due to change in concentration of present free H^+ or OH^- ions.

TYPES OF BUFFER SOLUTION

- (A). Simple buffer solution
- (B). Mixed buffer solution
 - (i) Acidic buffer solution (ii) Basic buffer solution
- (A) Simple Buffer Solution :- Aqueous solution of weak acid-weak base (WA WB) types of salt.

Ex. CH₃COONH₄, NH₄CN, AgCN etc.

$$pH = 7 + \frac{1}{2}pKa - \frac{1}{2}pK_b$$

 $CH_{3}COO^{-}+ NH_{4}^{+} + H_{2}O \rightleftharpoons CH_{3}COOH + NH_{4}OH.$

Case 1. When mixing of acid [H⁺]

 $CH_3COO^- + H^+ \rightleftharpoons CH_3COOH$

 $NH_4OH + H^+ \rightleftharpoons NH_4^+ + H_2O$

Case 2. When mixing of base [OH⁻]

 $NH_4^+ + OH^- \rightleftharpoons NH_4OH$

 $CH_3COOH + OH^- \rightleftharpoons CH_3COO^- + H_2O$

- (B) Mixed Buffer Solution :
 - (i) Acidic buffer solution :- Aqueous solution of mixture of weak acid and salt of same weak acid with any type of strong base is called acidic buffer solution.
 - Ex. CH₃COOH + CH₃COONa WA WASB
 - Weak acid + Strong base
 - 1. When $N_1V_1 = N_2V_2 \Rightarrow$ Salt (WA SB)
 - 2. When $N_1 V_1 > N_2 V_2 \Rightarrow$ Acidic buffer solution (WA + WASB salt) [CH₃COOH + CH₃COONa]

 $[CH_3 COOH + CH_3 COO^-] Na^+ (Spectator ion)$

Case 1. When mixing of acid [H⁺]

 $CH_3COO^- + H^+ \rightleftharpoons CH_3COOH$

Case 2. When mixing of base $[OH^-]$

 $\mathsf{CH}_3\,\mathsf{COOH}+\mathsf{OH}^-{\rightleftharpoons}\,\mathsf{CH}_3\mathsf{COO}^-{+}\,\mathsf{H}_2\mathsf{O}$

ie. in aqueous solution if weak acid and its conjugate are present then it is definitely acidic buffer solution.

(a) pH of acidic buffer solution:

 $\begin{array}{rcl} \mathsf{CH}_3\,\mathsf{COOH} & + & \mathsf{CH}_3\,\mathsf{COONa} \\ & & \mathsf{Acid} & + & \mathsf{Salt} \\ [\mathsf{CH}_3\,\mathsf{COOH} & + & \mathsf{CH}_3\,\mathsf{COO}^-] + \mathsf{Na}^+ \\ & & \mathsf{Acid} & & \mathsf{Conjugate} \end{array}$

 $\mathsf{CH}_3\,\mathsf{COOH}\rightleftharpoons\mathsf{CH}_3\mathsf{COO}^-+\mathsf{H}^+$

$$K_{a} = \frac{\left[CH_{3}COO^{-}\right]\left[H^{+}\right]}{\left[CH_{3}COOH\right]}$$

or
$$\left[H^{+}\right] = \frac{Ka[CH_{3}COOH]}{[CH_{3}COO^{-}]} = \frac{Ka[Acid]}{[Conjugate]}$$

taking -log on both sides

$$pH = pK_a - log \frac{[Acid]}{[Conjugate]} \text{ or } pH = pK_a + log \frac{[Conjugate]}{[Acid]}$$

Henderson's equation:

pH= pKa + log
$$\frac{[Salt]}{[Acid]}$$

(b) pH range of acidic buffer solution:

CH₃ COOH CH₃ COONa
1 : 10 pH = pKa + log
$$\frac{10}{1}$$

pH = pKa + 1
10 : 1 pH = pKa -1

So pH range

рН = рКа ± 1

(c) Maximum buffer action condition of acidic buffer solution :

CH₃ COOH CH₃ COONa 1 : 1 pH = pK_a + log $\frac{1}{1}$ pH = pK_a

(ii) Basic buffer solution :

Definition: Aqueous solution of mixture of weak base and salt of same weak base with any type of strong acid is called basic buffer solution.

Ex. $NH_4OH + NH_4CI$ [NH_4^+] = [NH_4CI]

 $[NH_4OH + NH_4^+] + Cl^-[Spectator]$

Case 1. When mixing of acid [H⁺]

 $NH_4OH + H^+ \rightleftharpoons NH_4^+ + H_2O.$

Case 2. When mixing of base $[OH^-]$

 $NH_4^+ + OH^- \rightleftharpoons NH_4OH$

(a) pOH of basic buffer solution:

 $[NH_4OH + NH_4CI]$ $NH_4OH \rightleftharpoons NH_4^+ + OH^ K_{b} = \frac{\left[NH_{4}^{+}\right]\left[OH^{-}\right]}{\left[NH_{4}OH\right]} \quad \text{or} \quad [OH^{-}] = \frac{K_{b}\left[NH_{4}OH\right]}{\left[NH_{4}^{+}\right]}$ taking –log on both sides pOH = $pK_b + log \frac{[NH_4^+]}{[NH_4OH]}$ Henderson's equation : $pOH = pK_b + log \frac{[Salt]}{[Base]}$ (b) pOH range of basic buffer solution:

> NH₄ OH : NH₄ Cl 1 : 10 10 : 1 $pOH = pK_b \pm 1$

(c) Maximum buffer action condition of basic buffer solution :

NH₄OH : NH₄Cl 1:1 pOH = pK

BUFFER CAPACITY

Definition :- It is defined as the number of moles of acid (or base) require by one litre of a buffer solution for changing its pH by one unit.

Buffer capacity = Number of equivalents of acid or base added per litre Change in pH of buffer solution

Ex.18 When 2 moles of HCl is added to 1 L. of an acidic buffer solution, its pH changes from 3.9 to 3.4. Find its buffer capacity.

Sol. B.C. = $\frac{2}{0.5}$ = 4

Ex.19 How much volume of 0.2 m solution of acid should be added to 100mL or 0.2m soln or sodium are take to prepare a buffer solⁿ of pH = 6?

pKa or CH₃COOH = 4.74

Sol. $P^{H} = P^{ka} + \log \frac{Salt}{A}$

Acid

$$\log \frac{[Salt]}{[Acid]} = P^{H} - P^{ka} = 6 - 4.74 = 1.26$$

$$\frac{[Salt]}{[Acid]} = 18.2$$
Mole of CH₃COONa in solution $\frac{100 \times 0.2}{1000} = 0.02$
Let volume of 0.2 acetic Acid added $\frac{U \times 0.2}{1000}$
 $\frac{0.2}{U \times 0.2} = 10.2$

$$\frac{0.2}{U \times \frac{0.2}{1000}} = 10$$

U = 5.49 mL

				J∃∃≣ Sarthi
CHEN	/IISTRY			ΚΟΤΑ
		PRA	CTICE SECTION-04	
Q.1	pH value of whic	h of the following is NOT e	qual to one?	
	(1) 0.1 M CH ₃ CO((2) 0.1 M NHO ₃	
	(3) 0.05 M H ₂ SO ₄		(4) 50 cm ³ 0.4 M ł	HCl + 50 cm ³ 0.2 M NaOH
Q.2	Calculate the pH	of a solution which contain	ns 100 mL of 0.1 M HCl an	nd 9.9 mL of 1.0 M NaOH.
	(1) 3.04	(2) 6.08	(3) 11.96	(4) None
0.2	Which and of the	following will docropso th	a pli of E0 ml of 0.01 Mk	audrochlaric acid?
Q.3		e following will decrease th D mL of 0.01 M HCl	-	mL of 0.002 M HCl
	(3) Addition of m		(4) Addition of 5 n	
Q.4	The pH of a solut	ion obtained by mixing 50	mL of 0.2 M HCl with 50 r	mL of 0.20 M CH₃COOH is
	(1) 0.30	(2) 0.70	(3) 1.00	(4) 2.00
Q.5	40 ml of 0.1 M a	mmonia is mixed with 20	ml of 0.1 M HCl. What is	the pH of the mixture? (pK_b of ammonia
-	solution is 4.74).			
	(1) 4.74	(2) 2.26	(3) 9.26	(4) 5.00
Q.6			.,	solution of HCl with pH of 1 to create an
Q.0		of with pH of 2?	to I little of all aqueous s	solution of their with pir of 1 to create an
	•	(2) 0.1 L	(3) 0.9 L	(4) 2.0 L
	(1) 9.0 L	(2) 0.1 L	(3) 0.9 L	(4) 2.0 L
Q.7	In what volume	ratio NH ₄ Cl and NH ₄ OH s	olutions (each 1 M) shou	uld be mixed to get a buffer solution of
-	pH 9.80? (pKb of			
	(1) 1 : 2.5	(2) 2.5 : 1	(3) 1 : 3.5	(4) 3.5 : 1
	(1) 1.2.3	(2) 2.3 . 1	(5) 1.5.5	(+) J.J. I
0.8	A buffor solution	contains 0.1 male of cod	ium acotato in 1000 cm 3	of 0.1 M acotic acid. To the above buffer

Q.8 A buffer solution contains 0.1 mole of sodium acetate in 1000 cm³ of 0.1 M acetic acid. To the above buffer solution 0.1 mole of sodium acetate is further added and dissolved. The pH of the resulting buffer is equal to

(1) pKa – log 2

(3) pKa + 2

(4) pKa + log 2

ANSWER KEY								
Que.	1	2	3	4	5	6	7	8
Ans.	1	1	4	3	3	1	3	4

INDICATOR

INTRODUCTION

(A) Definition: - Those compound or substance which indicate the nature of solution by changes their self colour.

- (B) Types of indicators:
- (a). Acidic indicator (HIn)

Ex. Phenolphthalein (HPh)

 $\mathsf{HPh} \quad \rightleftharpoons \mathsf{H}^{+} + \mathsf{Ph}^{-}$

colourless pink

(b). Basic indicator (InOH)

Ex. Methyl orange (MeOH)

 $\mathsf{MeOH} \rightleftharpoons \mathsf{Me}^{\scriptscriptstyle +} + \mathsf{OH}^{\scriptscriptstyle -}$

yellow orange red

(2) pKa

OSTWALD THEORY OF INDICATORS

- (i) According to this theory, all the indicators are weak organic acid or base.
- (ii) Every indicator has light colour in its unionised form and dark colour in ionised form.
- (iii) Every indicator works in opposite medium (it means if it is acidic then it will work in basic medium and vice versa) it means colour change in opposite medium due to their unionised form is change in ionised form.

Ex. Acidic indicator [HPh]

Case 1. HPh \rightleftharpoons H⁺ + Ph⁻

In highly acidic medium [H⁺] here : [HPh] >> [Ph⁻] Colourless

Case 2. $HPh \rightleftharpoons H^+ + Ph^-$

In highly basic medium [OH⁻] here : [Ph⁻] >> [HPh] Pink colour

(a) pH of acidic indicator -

$$HIn \rightleftharpoons H^{+} + In^{-}$$
$$K_{I} = \frac{\left[H^{+}\right]\left[In^{-}\right]}{\left[HIn\right]}$$
$$[H^{+}] = \frac{K_{I}\left[HIn\right]}{\left[In^{-}\right]}$$

Taking – log on both sides $pH = pK_I - log [HIn] + log [In^-]$

$$pH = pK_{I} + \log \frac{\left[In^{-} \right]}{\left[HIn \right]}$$

pH= pK₁ + log [Ionised form] [Unionised form]

(b) pOH of basic indicator -

InOH
$$\rightleftharpoons$$
 In⁺ + OH⁻

$$K_{I} = \frac{\left[In^{+} \right] \left[OH^{-} \right]}{\left[OH^{-} \right]}$$

 $pOH = pK_{1} + log \frac{[lonised form]}{[Unionised form]}$

(c) pH range of acidic indicator :

$$[Hin] : [In]
1 : 10
10 : 1
pH = pK_1 \pm 1$$

(d) pOH range of basic indicator :

[InOH] : [In⁺]

1 : 10

10 : 1

 $pOH = pK_1 \pm 1$

(e) Neutral condition for indicators (No working condition)

For acidic indicator				For bas	ic indica	tors	
[HIn]	:	[In ⁻]			[InOH]	:	[In⁺]
1	:	1		1		:	1
$pH = pK_1$						pOH =	⊧ pK _ι

S No.	Name of indicator	Colour in acidic	Colour in basic	Working pH range	
S.No.	Name of mulcator	medium	medium	of indicators	
1.	Methyl orange (MeOH)	Orange red	Yellow	3.1 to 4.5	
2.	Methyl red	Red	Yellow	4.2 to 6.2	
3.	Phenol red	Yellow	Red	6.2 to 8.2	
4.	Phenolphthalein (HPh)	Colourless	Pink	8.2 to 10.2	

ACID-BASE TITRATION

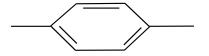
S.No.	Type of titration	pH range of titration	Suitable indicators	
1.	SA/SB.	3 – 11	All indicators (MeOH, HPh etc.)	
2	SA/WB	3-7	Methyl orange (MeOH)	
2.	SAT VVB	5-7	and methyl red	
3.	WA/SB	7 – 11	Phenolphthalein (HPh)	
4.	WA/WB	6.5 – 7.5	Phenol red	

Important points of titration :

- (i). Titration is always possible in two opposite solution. (i.e. one is acidic and other is basic).
- (ii). For any titration only that indicator is suitable if their working pH range is in pH range of titration.
- (iii). At the end point of titration equivalents of acids and bases are always same.
- (iv). At the end point, nature of solution depends on the type of titration.

SA/SB - Neutral (pH = 7)

SA/WB - Acidic

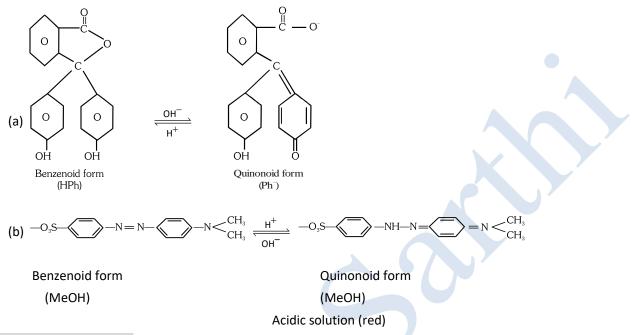

WA/SB - Basic

WA/WB - Any one possible

BENZENOID AND QUINONOID THEORY OF INDICATORS

- (i). According to this theory, all indicators are aromatic compounds.
- (ii). Unionised form of indicator is called benzenoid form and ionised form is called quinonoid form.

 \Rightarrow


Benzenoid form

Quinonoid form

(Unionised form) (Ionised form)

- (iii) Every indicator has light colour in its benzenoid form and dark colour in quinonoid form.
- (iv) Every indicator works in opposite medium due to their benzenoid form (unionised form) is changes in quinonoid form (ionised form).

ACID AND BASE CONCEPT

ARRHENIUS CONCEPT (1884)

- (a) Acid:- According to this concept, those substances which produce free H⁺ ions in aqueous solution are called acid.
 - **Ex.** HCl, HNO₃, H₂SO₄, H₃PO₄, H₂CO₃, H₂S, CH₃COOH etc.

 $HCl + H_2O \longrightarrow H^+(aq.) + Cl^-(aq.)$

 $H_2SO_4 + H_2O \longrightarrow 2H^+(aq.) + SO_4^{-2}(aq.)$

 $CH_3COOH + H_2O \longrightarrow CH_3COO^-(aq.) + H^+(aq.)$

(b) Base:- Those substances which produce free OH⁻ ions in aqueous solution are called base.

Ex. NaOH, KOH, Cs(OH), Rb(OH), NH₄OH, Ba(OH)₂, Ca(OH)₂, Al(OH)₃ etc.

NaOH + $H_2O \longrightarrow Na^+$ (aq.) + OH^- (aq.)

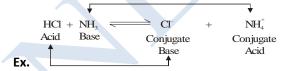
 $\begin{array}{l} \mathsf{Ba}(\mathsf{OH})_2 + \mathsf{H}_2\mathsf{O} \longrightarrow \mathsf{Ba}^{+2} \mbox{(aq.)} + 2\mathsf{OH}^- \mbox{(aq.)} \\ \mathsf{Al}(\mathsf{OH})_3 + \mathsf{H}_2\mathsf{O} \longrightarrow \mathsf{Al}^{+3} \mbox{(aq.)} + 3\mathsf{OH}^- \mbox{(aq.)} \end{array}$

- (c) Nature of water: According to this concept nature of water is neutral and act as a solvent.
- (d) Neutralisation Reaction: Those reactions in which acid and base react together to form water molecule are called neutralisation reactions.

i.e. $Na^+ + OH^- + H^+ + CI^- \longrightarrow NaCI + H_2O$ $H^+ + OH^- \longrightarrow H_2O$

(e) Strength of acids and bases:- This concept explains the strength of acids and bases depending upon the basis of degree of ionisation i.e. those electrolyte which have high degree of ionisation are strong electrolyte and those which have low degree of ionisation is weak electrolyte.

Ex. For strong electrolytes $\alpha \approx 100\%$



For weak electrolytes $\alpha < 100\%$

BRONSTED-LOWRY CONCEPT (1923)

It is based upon the exchange of proton.

- (a) Acid:- According to this concept those substances which have tendency to donate the proton (H⁺) by any method in any solvent are called acids.
 - **Ex.** (i) HCl, HNO₃, H₂SO₄, H₂CO₃, H₂S, CH₃COOH, H₃PO₃ etc.
 - (ii) HS⁻, HCO₃⁻, HSO₄⁻, H₂PO₄⁻, HPO₄⁻², H₂O etc.
 - (iii) NH₄⁺, H₃O⁺, PH₄⁺, CH₃COOH₂⁺ etc.
 - (vi) $[AI(H_2O)_6]^{+3}$, $[Ag(H_2O)_2]^{+1}$, $[Fe(H_2O)_6]^{+3}$ etc.
 - (a) HCl (Acid) + H₂O (Solvent) \longrightarrow H₃O⁺ + Cl⁻
 - (b) HS^- (Acid) + H_2O (Solvent) $\longrightarrow H_3O^+ + S^{-2}$
 - (c) NH_4^+ (Acid) + H_2O (Solvent) \longrightarrow $NH_3 + H_3O^+$
 - (d) $[AI(H_2O)_6]^{+3}(Acid) + H_2O(Solvent) \longrightarrow [AI(H_2O)_5OH]^{+2} + H_3O^+$
- (b) Base:- Those substances which have tendency to accept the proton by any method in any solvent are called the bases.
 - Ex. (i) NaOH, KOH, Rb(OH), Cs(OH), Ba(OH)₂, Ca(OH)₂, NH₄OH, Al(OH)₃ etc.
 - (ii) HS^- , HCO_3^- , HSO_4^- , $H_2PO_4^-$, HPO_4^{-2} , H_2O etc.
 - (iii) NH₃, RNH₂, R₂NH, R₃N, C₆H₅NH₂, C₅H₅N, H₂N-NH₂ etc.
 - (iv) O^{-2} , SO_4^{-2} , CO_3^{-2} , CI^- , Br^- , I^- , CN^- etc.
 - (a) NaOH (Base) + H₂O (Solvent) $\longrightarrow OH^{-} \xrightarrow{+NaOH_{2}^{+}} Na^{+} + H_{2}O$
 - (b) HS^- (Base) + H_2O (Solvent) \longrightarrow $H_2S + OH^-$
 - (c) NH_3 (Base) + H_2O (Solvent) \longrightarrow $NH_4^+ + OH^-$
 - (d) $CO_3^{-2}(Base) + H_2O$ (Solvent) \longrightarrow $HCO_3^{-} + OH^{-1}$
- (c) Nature of water:- According to this concept nature of water is amphoteric or amphiprotic i.e. water can act as both acid and base.
 - (i) HCl (Acid) + H₂O (Base) \longrightarrow Cl⁻ + H₃O⁺
 - (ii) NH_3 (Base) + H_2O (Acid) $\longrightarrow NH_4^+ + OH^-$
- (d) Neutralisation Reaction:- According to this concept those reaction in which acid and base react together and convert into their respective conjugate acid and base are called neutralisation reactions.

(e) Strength of acids and bases :- This concept explain the strength of acid and base depending upon the basis of relative tendency to accept or donate the proton.

(i)	HClO ₄	(ix) H ₃ PO ₄	(xvii)	H – OH
(ii)	HI	(x) HF	(xviii)	C_2H_5-OH
(iii)	HBr	(xi) CH₃COOH	(xix)	$C_6H_5NH_2$
(iv)	H_2SO_4	(xii) H ₂ CO ₃	(xx) NH	3
(v)	HCI	(xiii) H ₂ S	(xxi) R–I	NH ₂
(vi)	HNO ₃	(xiv) NH4 ⁺	(xxii) CH	4
(vii)	H₃O⁺	(xv) HCN	(xxiii) H ₂	2
(viii) HSO₄ [−]	(xvi) C ₆ H₅OH		

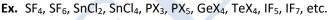
JEE ⊮ Sarthi KOTA

Ex.	(i)	HCI	+	H ₂ C)	\rightleftharpoons	CI⁻	+	H ₃ O ⁺
		Strong a	acid		Strong base		Weak base		Weak acid
	(ii)	CH₃COC	ЭН	+	H ₂ O	\rightleftharpoons	CH₃COO [_]	+	H_3O^+
		Weak a	cid		Weak base		Strong base		Strong acid
	(iii)	NH_3		+	H ₂ O	\rightleftharpoons	NH_4^+	+	OH⁻
		Weak b	ase		Weak acid		Strong acid		Strong base
	(iv)	HCI	+	CH₃	СООН	\rightleftharpoons	CI⁻	+	CH ₃ COOH ₂ ⁺
		Weak a	cid		Weak base		Strong base		Strong acid
	(v)	HCI	+	NH	3	\rightleftharpoons	CI⁻	+	NH4 ⁺
		Strong a	acid		Strong base		Weak base		Weak acid
	(vi)	CH₃COC	ЭН	+	NH ₃	\rightleftharpoons	CH₃COO [_]	+	NH4 ⁺
		Strong a	acid		Strong base		Weak base		Weak acid
		_							

LEWIS CONCEPT (1939)

(a) Lewis acid :- According to this concept those species which have self tendency to accept the lone pair of electrons are called acids. i.e. Lewis acid is an electron pair acceptor (electrophilic).

 $H^+ + : \overset{\circ}{\Omega}_x H^- \longrightarrow H : \overset{\circ}{\Omega}_x H$ Acid Base


Classification of Lewis acids :-

(i) Compounds whose central atom have an incomplete octect (electron deficient)

Ex. BF₃, BBr₃, BCl₃, Bl₃, B(CH₃)₃, B(OH)₃, AlCl₃, GeCl₃ etc.

$$\begin{array}{c} \stackrel{-\delta}{F} \xleftarrow{} \stackrel{+\delta}{\longleftarrow} \stackrel{-\delta}{B} \xrightarrow{} \stackrel{-\delta}{\longrightarrow} \stackrel{-\delta}{F} \\ \downarrow \\ F \stackrel{-\delta}{\longrightarrow} \end{array}$$

(ii) Compounds whose central atom have vacant d-orbitals and can accept one or more pair of lone electrons.

(iii) Molecules with a multiple bond between atoms of different electronegativities.

Ex. CO₂, SO₂, SO₃ etc.

(iv) Cations:-

Ex. Ag⁺, Na⁺, Li⁺, Al⁺³, Be⁺², Mg⁺², I⁺, Cl⁺, H⁺ etc.

False cations :-

Ex. NH₄⁺, H₃O⁺, CH₃COOH₂⁺, PH₄⁺ etc.

Ex. $Ag^+ + 2 : NH_3 \rightleftharpoons [Ag (:NH_3)_2]^+$

 $Cu^{+2} + 2(:H_2O)_2 \longrightarrow [Cu(:H_2O)_4]^{+2}$

(v) Elements which have six electrons in their outermost shell or valence shell.

O–Family (O, S, Se, Te) $SO_{3}^{-2} + \dot{O} \longrightarrow [SO_{3} \longrightarrow O]^{-2}$ Base Acid

(b) Lewis base :- Those species which have self tendency to donate the lone pair of electrons are called bases. i.e. a base is an electron pair (lone pair) donor (nucleophile).

Classification of Lewis bases :-

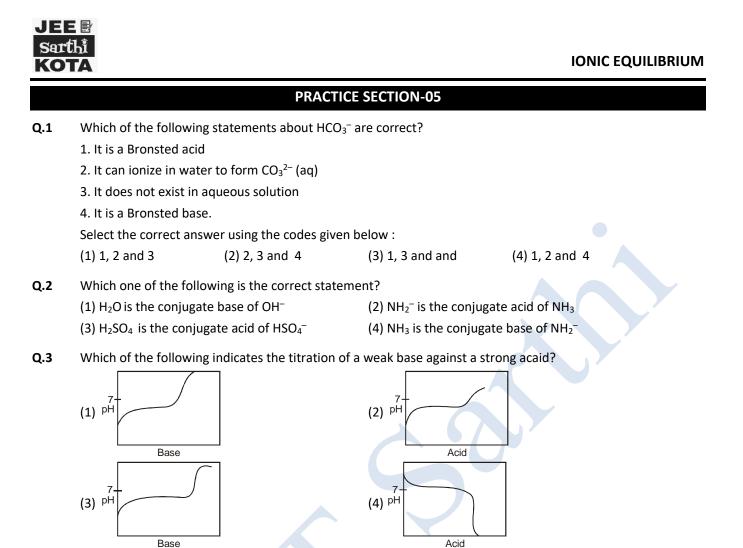
(i) Those species whose central atom have lone pair of electrons and have self tendency to donate them – Ex.

$$R - \dot{N}H_2, R_2 - \dot{N}H, C_6H_5 - \dot{N}H_2, C_5H_5 - \ddot{N}, H_2N - \dot{N}H_2,$$
$$H - \dot{O} - H, R - \dot{O} - H, R - \dot{O} - R, R - \dot{S} - R, R - \dot{S} - H, etc.$$

Explain :- $R \xrightarrow{-\delta} O \xleftarrow{-R} R_{+I}$ (Electron density on O, increases due to +I effect)

(ii) Anions -

 NH_3 ,


Ex. O⁻², SO₄⁻², CO₃⁻², Cl⁻, Br⁻, F⁻, I⁻, N⁻³, P⁻³, NO₃⁻, S⁻², CN⁻, etc.

- (c) Nature of water :- According to this concept nature of water is basic i.e. water is a base.
- (d) Neutralisation Reaction :- According to this concept those reactions in which acid and base react together to form a co-ordinate bond between them are called neutralisation reactions.

Ex.

(e) Strength of acids and bases :- This concept explain the strength of acids and bases depending upon the basis of self tendency. To accept or donate the lone pair of electrons (e⁻).

Ex. $SO_2 < SO_3$ (Strong acid)

Q.4 The pH range of an indicator is given by (1) pH = pK + 1 (2) pH = pK - 1

(3) pH = pK

(4) $pH = pK \pm 1$

	AN	SWER H	KEY	
Que.	1	2	3	4
Ans.	4	3	4	4

CHEN	1ISTRY				JEE≣ Sarthi KOTA
	RCISE-I				Topic wise Questions
	If [OH ⁻] = 5.0 × 10 ⁻⁵ M	then pH will be :-	Q.9		f ionisation of a compound
	(1) 5 - log 5	(2) 9 + log 5		depends upon:	·
	(3) log 5 - 5	(4) log 5 - 9		(1) Size of the so	olute molecules
Q.2	Find out nH of solutio	In having 2 × 10^{-3} moles of			e solute molecules
	OH^{-} ion's in 2 litre solution	U U			e container taken
		(2) pH = 3 + log2			of current passed
	(3) $pH = 3 - \log 2$			(i) the unounc	
			Q.10		10 ⁻² M HCN acid, having pOH is
	•	is 3.82. The hydrogen ion		10: -	
	concentration will be:			(1) $K_a = 10^{-4}$	(2) $K_a = 10^{-2}$
	(1) 1.96×10^{-2} mol L ⁻¹			(3) $K_a = 10^{-5}$	(4) None of them
	(3) $1.96 \times 10^{-5} \text{ mol } \text{L}^{-1}$	(4) None of them	0 11	Which of the f	ollowing will occur if a 1.0 M
Q.4	Given HF + H ₂ O $\frac{K_a}{K_a}$	\rightarrow H ₃ O ⁺ + F ⁻ ; F ⁻ + H ₂ O	Q.11		eak acid is diluted to 0.01 M at
	$\xrightarrow{K_{B}}$ HF + OH ⁻ .	· · · · · · · · · · · · · · · · · · ·		constant tempe	
	Which realtion is cor	rect ?			onisation will increase
				(2) [H ⁺] will decr	
	(1) K _b + K _w	(2) $K_b = \frac{L}{K_m}$		(3) K _a will increa	
	(3) $K_a \times K_b = K_w$	(4) $\frac{K_a}{K} = K_w$		(4) pH will decre	
		м _b	Q.12	The pH of 0.15 M	A solution of HOCI ($K_a = 9.6 \times 10^{-6}$)
OSTW	ALD'S DILUTION LAW			is:-	
Q.5	Order of dissociation	n of 0.1 N CH₃COOH is:-		(1) 4.42	(2) 2.92
	(Dissociation constant			(3) 3.42	(4) None
	(1) 10 ⁻⁵	(2) 10 ⁻⁴	0.12	IF Ka of HCN	= 4 × 10 ⁻¹⁰ , then the pH of
	(3) 10 ⁻³	(4) 10 ⁻²	Q.15	2.5×10^{-1} molar	
Q.6	Degree of dissociation	n of 0.1N CH ₃ COOH is: (K _{acid}			
	= 1 × 10 ⁻⁵)			(1) 4.2	(2) 4.7
	(1) 10 ⁻⁵ (2) 10 ⁻⁴	(3) 10 ⁻³ (4) 10 ⁻²		(3) 0.47	(4) 5.0
0.7			Q.14	The molarity o	f nitrous acid at which its pH
Q.7		lissociation of weak dibasic y is the hydrogen ion		becomes 2. (Ka =	= 4.5 × 10 ⁻⁴) :-
		is the initial concentration		(1) 0.3333	(2) 0.4444
	of acid :-			(3) 0.6666	(4) 0.2222
	(1) $\frac{\alpha(y)^{-1}}{2}$ (3) $\frac{y(\alpha)^{-1}}{2}$	(2) y(α) ⁻¹	0.15	Correct stateme	ent for HCN weak acid at 250C
	2		Q.15	temperature.:-	
	(3) $\frac{y(\alpha)^{-1}}{\alpha}$	(4) None of them			
	2			(1) $\alpha = \frac{K_a}{[H^+]}$	(2) $\alpha = \frac{K_a \times [OH^-]}{K_w}$
Q.8	The degree of dissocia	ation of acetic acid is given			
		$\alpha = 0.1 \times C^{-1}$ (where		(3) (1) & (2) both	h (4) $K_b = C\alpha^2$
		the acid) What is the pH of	0.16	For which. diluti	ion law is applicable :
	the solution :-	and all and a three prior		(1) NaCl (SASB)	(2) HCI (SA)
	(1) 1 (2) 2	(3) 3 (4) 4		(3) CH ₃ COONa(V	

JEE ⊮ Sarthi KOTA

KO					
BIOD	ATA OF WATER				
Q.17	At any temperature, the proton concentration of water is (1) 10^{-14} M (2) Kw (3) > 10^{-7} M (4) $\sqrt{K_w}$				
Q.18	Ionic product of water will increase, if :- (1) Decrease in pressure (2) Add H ⁺ (3) Add OH ⁻ (4) Increase the temperature				
Q.19	For water at 25° C, 2×10^{-7} moles per litre is the correct answer for which one of the followoing (1) [H ⁺] + [OH ⁻] (2) [H ⁺] ² (3) [OH ⁻] ² (4) [H ⁺] - [OH ⁻]				
Q.20	The pH of 1 N H ₂ O is :- (1) 7 (2) > 7 (3) < 7 (4) 0				
Q.21	At 25 ^o C, the dissociation constant for pure water is given by :- (1) $(55.4 \times 10^{14})^{-1}$ (2) 1×10^{-14} (3) $\frac{1 \times 10^{-14}}{18}$ (4) None of these				
Q.22	 Ionic product of water is equal to :- (1) Dissociation constant of water × [H₂O] (2) Dissociation constant of water × [H⁺] (3) Product of [H₂O] and [H⁺] (4) Product of [OH⁻]² and [H⁺] 				
Q.23	Addition of H+ and OH- ion's concentration at $90^{\circ}C$ (1) 10^{-14} (2) 10^{-12} (3) 2×10^{-6} (4) 2×10^{-7}				
Q.24	At 90°C, pure water has $[H_3O^+] = 10^{-6.7} \text{ mol } L^{-1}$ what is the value of K _W at 90°C:- (1) 10^{-6} (2) 10^{-12} (3) 10^{-67} (4) $10^{-13.4}$				
Q.25	At 373 K, temp. the pH of pure H ₂ O can be:- (1) < 7 (2) > 7 (3) = 7 (4) = 0				
Q.26	Choose the correct relation:- (1) $\frac{pH+pOH}{14} = 7$ (2) pH + pOH = 14				

Q.27 The common ion effect is shown by which of the following sets of solutions :-

(1) BaCl₂ + BaNO₃ (2) NaCl + HCl

- (3) NH₄OH + NH4Cl (4) None
- **Q.28** Which of the following is a true statement:
 - The ionisation constant and ionic product of water are same.
 - (2) Water is a strong electrolyte.
 - (3) The value of ionic product of water is less than that of its ionisation constant.
 - (4) At 298K, the number of H⁺ ions in a litre of water is 6.023×10^{16} .
- Q.29 If it is known that H₂S is a weak acid and it is ionised into 2H⁺ and S⁻². Then in this solution HCI is added so, pH becomes less, then what will happen: -

(1) Decrease in S⁻² ion concentration
 (2) Concentration of S⁻² is not affected
 (3) Increase in S⁻² ion concentration
 (4) It is not possible, to add HCl in solution

- **Q.30** Dissociation constant of water at 25° C is (1) $10^{-14} \times (55.5)^{-1}$ (2) $10^{-7} \times (18)^{-1}$
 - $(1) 10^{-14} \times (18)^{-1} \qquad (2) 10^{-14} \times (18)^{-1} \\ (4) 10^{-7} \times (55.4)^{-1}$

SALTS, TYPES O F SALT & CONJUGATE THEORY

- Q.31 Aqueous solution of ammonium sulphate

 Turns blue litmus to red
 Turns red litmus to blue
 Bleaches litmus
 Has no action on litmus

 Q.32 Which of the following is not an acidic salt :
 NaHSO4
 HCOONa
 NaH₂PO3
 None of them
- Q.33 Salt hydrolysis in water is due to following nature of water

(1) Neutral nature	(2) Acidic nature
(3) Basic nature	(4) Amphiprotic nature

- Q.34 Which is a basic salt :-(1) PbS
 - (2) PbCO₃ (3) PbSO₄

```
(3) 1 5 5 6 4
```

(3) pOH = 14 + pH

(4) pH = 14 + pOH

IONIC EQUILIBRIUM

- Q.35 A salt 'X' is dissolved in water of pH = 7. The salt is made resulting solution becomes alkaline in nature. The salt is made
 - (1) A strong acid and strong base
 - (2) A strong acid and weak base
 - (3) A weak acid and weak base
 - (4) A weak acid and strong base
- **Q.36** The process of neutralisation invariably results in the production of :-
 - (1) H⁺ ions
 - (2) OH^{-} ions
 - (3) Both $\mathrm{H^{+}}\,and~\mathrm{OH^{-}}\,ions$
 - (4) Molecules of water

HYDROLYSIS OF SALTS

- **Q.37** When salt NH₄Cl is hydrolysed at 25°C, the pH is (1) 7 (2) <7 (3) >7 (4) 0
- Q.38 Degree of hydrolysis of 0.25 M CH3COONa is 10% what will be the degree of hydrolysis if concentration of CH₃COONa is made 0.01 M (1) 10% (2) 1% (3) 50% (4) 75%
- Q.39 Which salt will not show hydrolysis :-(1) KCl (2) Na₂SO₄ (3) NaCl (4) All
- **Q.40** HCOO⁻ + H₂O \rightleftharpoons HCOOH + OH⁻ is related:-

(1) h =
$$\sqrt{K_h}$$

(3) h = $\sqrt{\frac{K_h}{K_h}}$

Q.41 Four solution of NH₄Cl are taken with concentration 1 M, 0.1 M, 0.01 M & 0.001 M. their degree of hydrolysis are h_1 , h_2 & h_3 , h_4 . What is the gradation of degree of hydrolysis ? (1) $h_1 > h_2 > h_3 > h_4$ (2) $h_1 = h_2 = h_3 = h_4$ (3) $h_4 > h_3 > h_2 > h_1$ (4) None of these

(2) h = $\sqrt{\frac{K_h}{C}}$ (4) K_h = \sqrt{hc}

- Q.42 If pK_b for CN⁻ at 25°C is 4.7. The pH of 0.5M aqueous NaCN solution is :-(1) 12 (2) 10 (3) 11.5 (4) 11
- Q.43 The highest pH value is of :-
 - (1) 0.1 M NaCl
 - (2) 0.1 M NH₄Cl
 - (3) 0.1 M CH₃COONa
 - (4) 0.1 M CH₃COONH₄

Q.44 pH of K₂S solution is:-

(1) 7 (2) Less than 7 (3) More than 7 (4) 0

Q.45 For anionic hydrolysis, pH is given by:-

(1)
$$pH = \frac{1}{2} pK_W - \frac{1}{2} pK_b - \frac{1}{2} logc$$

(2) $pH = \frac{1}{2} pK_W + \frac{1}{2} pKa - \frac{1}{2} pK_b$
(3) $pH = \frac{1}{2} pK_W + \frac{1}{2} pKa + \frac{1}{2} logc$
(4) None of above

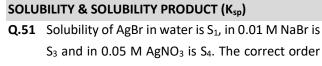
- **Q.46** A weak acid react with strong base, ionisation constant of weak acid is 10^{-4} . Find out equilibrium constant for this reaction :-(1) 10^{-10} (2) 10^{10} (3) 10^{-9} (4) 10^{9}
- **Q.47** Hydroxyl ion concentration [OH⁻] in the case of sodium acetate can be expressed as (where K_a is dissociation constant of CH₃COOH and C is the concentration of sodium acetate):-

(1)
$$[OH^{-}] = (CK_w. K_a)^{1/2}$$

(2) [OH⁻] = C.K_w
$$\sqrt{K_a}$$

(3)
$$[OH^{-}] = \left(\frac{C.K_{w}}{K_{a}}\right)^{1/2}$$

(4) [OH⁻] = C. K_a. K_w.


- Q.48 Consider :-
 - (a) FeCl₃ in water Basic(b) NH₄Cl in water Acidic
 - (c) Ammonium acetate in water Acidic
 - (d) Na₂CO₃ in water Basic
 - Which is/are not correctly matched:-
 - (1) b and d (2) b only
 - (3) a and c (4) d only
- Q.49 Which of the following salts undergoes hydrolysis in water:(1) Na₃PO₄
 (2) CH₃COONa
 (3) NaNO₃
 (4) Both of (1) and (2)
- **Q.50** Degree of Hydrolysis of $\frac{N}{100}$ solution of KCN is

(Given Ka = 1.4 imes 10⁻⁹)

(1) 2.7×10^{-3} (2) 2.7×10^{-2} (3) 2.7×10^{-4} (4) 2.7×10^{-5}

JEE ⊮ Sarthi KOTA

IONIC EQUILIBRIUM

- of these solubilities is : (1) $S_1 > S_2 > S_3 > S_4$ (2) $S_1 > S_2 = S_3 > S_4$ (3) $S_4 > S_3 > S_2 > S_1$ (4) $S_1 > S_3 > S_2 > S_4$
- **Q.52** The solubility product of sparingly soluble univalent salt is defined as the product of ionic concentration in a:-
 - (1) 1 M solution
 - (2) Concentration solution
 - (3) Very dilute solution
 - (4) Saturated solution
- **Q.53** The solubility of AgCl in 0.1 M NaCl is (K_{sp} of AgCl = 1.2×10^{-10})
 - (1) 0.05 (2) 1.2×10^{-6} (3) 2×10^{-5} (4) 1.2×10^{-9}
- **Q.54** If the solubility of Ag_2SO_4 in 10^{-2} M Na_2SO_4 solution be 2×10^{-6} M then Kap of Ag_2SO_4 will be (1) 32×10^{-24} (2) 16×10^{-18} (3) 32×10^{-18} (4) 16×10^{-24}
- Q.55 The expression of solubility product of mercurous iodide is :-
 - (1) $[2 Hg^+]^2 \times 2 [I^-]^2$ (2) $[Hg^{++}]^2 \times [2I^-]^2$
 - (3) $[Hg_2^{2+}] \times [I^-]^2$ (4) $[Hg^{2+}]^2 \times [I^-]^2$
- **Q.56** At 25°C, the K_{sp} value of AgCl is 1.8×10^{-10} . If 10^{-5} moles of Ag⁺ are added to solution then K_{sp} will be :-

(1) 1.8 × 10 ⁻¹⁵	(2) 1.8×10^{-10}
(3) 1.8 × 10 ⁻⁵	(4) 18 × 10 ⁺¹⁰

Q.57 50 mL of a solution containing 10^{-3} mole of Ag⁺ is mixed with 50 mL of a 0.1 M HCl solution. How much Ag⁺ remains in solution ? (Kap of AgCl = 1.0 × 10^{-10})

(1) 2.5 × 10 ⁻⁶	(2) 2.5 × 10 ⁻⁷
(3) 2.5 × 10 ⁻⁴	(4) 2.5 × 10 ⁻¹⁰

Q.58 If the solubility of Ag_2SO_4 in 10^{-2} M Na_2SO_4 solution be 2×10^{-8} M then Kap of Ag_2SO_4 will be (1) 10^{-6} (2) 10^{-7} (3) 2×10^{-6} (4) 2×10^{-7} (3) 1.68×10^{-12} (4) 1.6875×10^{-11}

Q.60 If the concentration of CrO_4^{2-} ion in a saturated solution of silver chromate will be 2×10^{-4} M, solubility product of silver chromate will be -(1) 4×10^{-8} (2) 8×10^{-12}

(3) 32 x 10 ⁻¹²	(4) 6 x 10 ⁻¹²
(5) 52 X 10	(4) 0 X 10

Q.61 If the solubility of AgCl (formula mass=143) in water at 25°C is 1.43×10^{-4} g/100 mL of solution then the value of K_{sp} will be:-

(1) 1 × 10 ⁻⁵	(2) 2 × 10 ⁻⁵
(3) 1 × 10 ⁻¹⁰	(4) 2 × 10 ⁻¹⁰

Q.62 The solubility product of As2S3 is given by the expression:-

(1) Ksp = $[As^{3+}] \times [S^{-2}]$
(2) Ksp = $[As^{3+}]^1 [S^{-2}]^1$
(3) Ksp = $[As^{3+}]^3 [S^{-2}]^2$
(4) Ksp = $[As^{3+}]^2 [S^{-2}]^3$

- **Q.63** If the solubility of lithium sodium hexeafluoro aluminate Li₃Na₃(AIF₆)₂ is 'S' mol L⁻¹. Its solubility product is equal to :-
 - (1) S⁸ (2) 12 S³ (3) 18S³ (4) 2916 S⁸
- **Q.64** If solubility product of the base $M(OH)_3$ is 2.7 × 10⁻¹¹, the concentration of OH^{-1} will be (1) 3 × 10⁻³ (2) 3 × 10⁻⁴ (3) 10⁻³ (4) 10⁻¹¹
- **Q.65** If the solubility of Ag₂CrO₄ is S mole/litre. Its solubility product is:
 - (1) S^2 (2) S^3 (3) $4S^3$ (4) $2 S^3$

APPLICATION OF SOLUBILITY PRODUCT (Ksp)

- **Q.66** At 30°C, In which of the one litre solution, the solubility of Ag_2CO_3 (solubility product = 8 × 10⁻¹²) will be maximum: -(1) 0.05 M Na₂CO₃ (2) Pure water
 - (3) 0.05 M AgNO₃
 - (4) 0.05 M NH₃

Q.67	The addition of KCl solubility of AgCl, beca	to AgCl decreases the ause
	(1) K _{sp} of AgCl decreas	
	(2) K _{sP} of AgCl increase	
	(3) Solution becomes unsaturated	
	(4) Ionic product excee	eds the k_{sp} value
Q.68	Solubility of AgBr will I	be minimum in:-
	(1) Pure water	(2) 0.1 M CaBr ₂
	(3) 0.1 M NaBr	(4) 0.1 M AgNO₃
Q.69	Solubility product of a	sparingly soluble salt AX_2
	is 3.2×10^{-11} . Its solub	ility in mol/litre is:
	(1) 5.6 × 10 ⁻⁶	(2) 3.1 × 10 ⁻⁴
	(3) 2 × 10 ⁻⁴	(4) 4 × 10 ⁻⁴
Q.70	In which of the follow	ing, the solution of AgSCN
	will be unsaturated :-	
	(1) [Ag ⁺] [SCN ⁻] = K _{sp}	
	(2) $[Ag^+] \times [SCN^-] < K_{sp}$	
	(3) $[Ag^+] \times [SCN^-] > K_{sn}$	

- (3) $[Ag^+] \times [SCN^-] > K_{sp}$
- (4) [Ag⁺] [SCN⁻]² < K_{sp}
- Q.71 If 's' and 'S' are respectively solubility and solubility product of a sparingly soluble binary electrolyte then :-

(1)
$$s = S$$

(3) $s = S^{1/2}$
(2) $s = S^2$
(4) $s = \frac{1}{2}S$

- **Q.72** It a solution contains 10^{-6} M each of X⁻, Y²⁻ and Z³⁻ ions, then upon addition of AgNO₃(s) slowly to the above solution with stirring : (Given : $K_{ap}(AgX) = 9 \times 10^{-14}$, $K_{ap}(Ag_2Y) = 4.9 \times 10^{-21}$, $K_{ap}(Ag_3Z) = 5.12 \times 10^{-28}$)
 - (1) Ag_3Z will be the first one to precipitate out.
 - (2) Ag_2Y will be the first one to precipitate out.
 - (3) AgX will be the first one to precipitate out.
 - (4) Nothing can be said with certainity.
- **Q.73** Which of the following metal sulphide has maximum solubility in water? (1) CdS ($K_{sp} = 36 \times 10^{-30}$)
 - (2) FeS ($K_{sp} = 11 \times 10^{-20}$)
 - (3) HgS ($K_{sp} = 36 \times 10^{-54}$)
 - (4) ZnS ($K_{sp} = 11 \times 10^{-22}$)

Q.74 If the maximum concentration of $PbCl_2$ in water is 0.01 M at 298 K. Its maximum concentration in 0.1 M NaCl will be:-(1) 4×10^{-3} M (2) 0.4×10^{-4} M

(3) 4×10^{-2} M (4) 4×10^{-4} M

- **Q.75** Which of the following has maximum solubility (Ksp value is given in brackets) :-(1) HgS (1.6×10^{-54}) (2) PbSO4 (1.3×10^{-8}) (3) ZnS (7.0×10^{-26}) (4) AgCl (1.7×10^{-10})
- Q.76 In which of the following, the solubility of AgCl will be maximum: -(1) 0.1 M AgNO₃ (2) Water
 - (3) 0.1 M NaCl (4) 0.1 M KCl
- **Q.77** The solubility product of three sparingly soluble salts are given below :

No. Formula	Solubility product
1 PQ	4.0×10^{-20}
2 PQ2	3.2×10^{-14}
3 PQ3	2.7 × 10 ⁻³⁵

The correct order of decreasing molar solublity is:-

(1) 1, 2, 3	(2) 2, 1, 3
(3) 3, 2, 1	(4) 2, 3, 1

- **Q.78** The Ksp value for $Gd(OH)_3$ is 2.8×10^{-23} , the pH at which $Gd(OH)_3$ begins to precipitate is:-(1) 6.08 (2) 5.08 (3) 8.47 (4) 4.08
- **Q.79** If the solubility product of $AgBrO_3$ and Ag_2SO_4 are 5.5 × 10⁻⁵ and 2 × 10⁻⁵ respectively, the relationship between the solubilities of these can be correctly represented as:-
 - (1) $sAgBrO_3 > sAg_2SO_4$
 - (2) $sAgBrO_3 = sAg_2SO_4$
 - (3) $sAgBrO_3 < sAg_2SO_4$
 - (4) $sAgBrO_3 = sAgSO_4$
- **Q.80** Solubility product of Mg(OH)₂ is 1×10^{-11} . At what pH, precipitation of Mg(OH)₂ will begin from 0.1 M Mg²⁺ solution :-

(1) 9 (2) 5 (3) 3 (4) 7

IONIC EQUILIBRIUM

Q.81 Consider (1) $Zn(OH)_2$ (2) $Cr(OH)_3$ (3) $Mg(OH)_2$ (4) Al(OH)₃ which hydroxide is precipitated by NH₄OH containing NH₄Cl :-(1) 1. 2 (2) 2. 4

())	())
(3) Only 4	(4) 1, 2, 3 and 4

- **Q.82** What will happen if the pH of the solution of 0.001 M Mg(NO₃)₂ solution is adjusted to pH = 9 $(K_{sp}Mg(OH)_2 = 8.9 \times 10^{-12})$ (1) ppt will take place
 - (2) ppt will not take place
 - (3) Solution will be saturated
 - (4) None of these
- Q.83 When HCl gas is passed through a saturated solution of common salt, pure NaCl is precipitated because:-
 - (1) The impurities dissolve in HCl
 - (2) HCl is slightly soluble in water
 - (3) The ionic product [Na⁺] × [Cl⁻] exceeds the solubility product of NaCl
 - (4) The solubility product of NaCl is lowered by Cl⁻ from aq. HCl
- Q.84 To have more sulphide ion concentration, H₂S should be passed through:-
 - (1) 1 N HCl solution
 - (2) 0.1 M HCl solution
 - (3) A neutral solution such as water
 - (4) An ammonical solution
- **Q.85** The solubility product of hydroxides of Mg^{+2} , Zn⁺², and Fe⁺³ decreases as Ksp Mg(OH)₂ > Ksp Zn(OH)₂ > Ksp Fe(OH)₃ The
 - order of precipitation of hydroxides is:-
 - (1) Fe(OH)₃, Zn(OH)₂, Mg(OH)₂
 - (2) Mg(OH)₂, Zn(OH)₂, Fe(OH)₃
 - (3) Zn(OH)₂, Fe(OH)₃, Mg(OH)₂
 - (4) Zn(OH)₂, Mg(OH)₂, Fe(OH)₃
- **Q.86** What is the molar concentration of chloride ion for the solution obtained by mixing 300 mL of 3.0M NaCl and 200 mL of 4.0 M solution of BaCl₂

•	
(1) 5.0 M	(2) 1.8 M
(3) 1.6 M	(4) None of these

pH
 Q.87 10⁻² mole of NaOH was added to 10 litre of water. The pH wil chage by

 (1) 4
 (2) 3
 (3) 11
 (4) 7

(1) Strong acid and strong base
(2) Weak acid and weak base
(3) Strong acid and weak base
(4) Weak acid and strong base
Q.89 Find out (OH⁻) concentration in pH = 3.28 solution
(1) 5.3 × 10⁻⁴
(2) 5.3 × 10⁻¹⁰
(3) 1.8 × 10⁻¹⁰
(4) 1.8 × 10⁻¹¹

Q.88 pH of water is 7. When any substance Y is dissolved in water then pH becomes 13.

Substance Y is a salt of :-

- Q.90 Calculate the pH of resulting solution obtained by mixing 50 mL of 0.6 N HCl and 50 ml of 0.3 N NaOH
 - (1) 0.1 (2) 0.8 (3) 2.1 (4) 4
- Q.91 The pH of HCl is 5. It is diluted by 1000 times Its pH will be

(1) 5 (2) 8 (3) 2 (4) 6 - 7

Q.92 Given :-

(a) 0.005 M H ₂ SO ₄	(b) 0.1 M Na ₂ SO ₄	
(c) 10 ⁻² M NaOH	(d) 0.01 M HCl	
Choose the correct code having same pH :-		
(1) a, c, d	(2) b, d	
(3) a, d	(4) a, c	

- **Q.93** What is H⁺ ion concentration of 5×10^{-3} M H₂CO₃ solution having a 10% dissociation:-(1) 10^{-3} (2) 10^{-2}
 - (3) 10^{-1} (4) 5×10^{-2}
- Q.94 pH of 3×10^{-3} M solution of H₃ X will be Assuming $\alpha_1 = 1/3, \alpha_3 = negligible$ (1) 2.40 (2) 3.0 (3) 3.4771 (4) 4.0
- Q.96 If 100 mL of pH = 3 and 400 mL of pH = 3 is mixed, what will be the pH of the mixture (1) 3.2 (2) 3.0 (3) 3.5 (4) 2.8

CHEI	VIISTRY								ΚΟΤΑ
Q.97	10 ⁻⁶ M H0	Cl is diluted	to 100 time	s. Its pH is :-	Q.107	Which wo	ould decrea	se the pH c	of 25 cm ³ of a
	(1) 6.0	(2) 8.0	(3) 6.95	(4) 9.5		0.01 M so	lution of hy	drochloric a	cid:-
Q.98	pH of an a	aqueous so	lution of HC	l is 5. If 1 c.c. of		(1) The	addition	of 25 cn	n ³ , 0.005 M
	this solution is diluted to 1000 times. The pH will						ochloric acid		
	become (1) 8	(2) 5	(3) 6.9	(4) None			ddition of 2	5 cm ³ , 0.02	M hydrochloric
						acid	ddition of m		aatal
Q.99	The pH of solution is increased from 3 to 6. Its H ⁺ ion concentration will be :-				(3) The a		nagnesium n	netai	
	(1) Reduced to half								
	(2) Double	ed				•		ammonia so	lution which is
	(3) Reduc	ed by 1000	times				d will be :-	(2) 5	
	(4) Increa	sed by 100	0 times			(1) 2	(2) 11	(3) 5	(4) 7
Q.100		ation is wro	-						and it remains
	(1) 10 ^{-pH} +	(1) $10^{-pH} + 10^{-pOH} = 10^{-14}$				•			ch is absorbed.
	(2) pH α	1					pH will be :-		
	() [(1) Greate		•	
	(3) K _w α T					(2) Less th (3) 7			
	(4) dissoc	iation const	tant of wate	r K = 1.8 × 10 ⁻¹⁶			ds on ionic	product of v	vater
Q.10 1	L Find the p	0H of 0.1 M	NaHCO₃.						
	(1) 3.7		(2) 8.4	A		(1) 1	¹ M formic a (2) > 1	(3) < 1	(4) 13
	(3) 9.6		(4) None (of these		(1) 1	(2) > 1	(5) < 1	(4) 15
Q.102 In a solution of $pH = 5$, more acid is added in		Q.111	For $\frac{N}{10}$ H;	₂ SO ₄ , pH val	ue is :-				
				he increase in		10		(3) 0.856	(4) None
	hydrogen	ion concer	tration is:-						
	(1) 100 tir	nes	(2) 1000 t	imes			•		st be removed
	(3) 3 time	S	(4) 5 time	s				us solution to	o change its pH
Q.103	3 Which wi	l have pH c	loser to 1 :			from 12 to (1) 0.009		(3) 0.02	(4) 0.1
	(1) 100 m	I N/10 HCI ·	+ 100 ml N/1	0 NaOH			. ,		
	(2) 55 ml	N/10 HCl +	45 ml N/10	NaOH	Q.113		•		removed from
			90 ml N/10			from 2 to	•	I solution to	o change its pH
	(4) 75 ml	N/5 HCl + 2	5 ml N/5 Na	ОН		(1) 1	(2) 0.02	(3) 0.009	(4) 0.01
Q.104	An aqueo	us solution	whose pH =	0 is :-					
(1) Basic (2) Acidic		Q.114 8 g NaOH and 4.9 g H ₂ SO ₄ are present in one litre of the solution. What is its pH							
	(3) Neutra	al	(4) Amph	oteric			ution. What	•	
Q.105	5 The pH of	a 10 ⁻¹⁰ M N	IaOH solutio	n is nearest to :-		(1) 1 (3) 12		(2) 13 (4) 2	
	(1) 10	(2) 7	(3) 4	(4) – 10					
Q.106	5 The pH	of the sol	ution produ	uced when an			• •	-	for 1/3 & 2/3
-				pH 5 is mixed		0.1 M Na		on of 0.1 M	CH ₃ COOH with
	with equa	al volume	of an aqueo	ous solution of		(1) +2log 2		(2) –2 log	3
	strong aci	d of pH 3 is	5 :-			(3) 2 log 1		(4) 2 log 2	
	(1) 3.3	(2) 3.5	(3) 4.5	(4) 4.0		(0) 2 106 1	·, ·	1,21062	, -

- Q.116 One litre solution contains 1M HOCI [Ka= 10⁻⁸] and 1 M NaOH. What is the pH of the solution:-(1) 8 (2) 11 (3) 5 (4) 2
- **Q.117** What is the quantity of NaOH present in 250 cc of the solution, so that it gives a pH = 13 :-(1) 10^{-13} g (2) 10^{-1} g (3) 1.0 g (4) 4.0 g
- Q.118 0.001 mol of the strong electrolyte $M(OH)_2$ has been dissolved to make a 20 mL of its saturated solution. Its pH will be : - [Kw = 1×10^{-14}] (1) 13 (2) 3.3 (3) 11 (4) 9.8
- Q.119 0.1 M H₂S has $K_1 = 10^{-6} \& K_2 = 1.5 \times 10^{-12}$. What will be ht concentration of S⁻² in the solution. (1) ~ 10⁻⁶ (2) ~ 10⁻⁹

$(1) \approx 10^{\circ}$	$(2) \approx 10^{\circ}$
$(3) \approx 1.5 \times 10^{-12}$	(4) 1.2 × 10 ⁻¹³

- Q.120 Four acids HA, HB, HC and HD form salts with NaOH of pH 7,8,9 and 10 respectively when each solution was 0.1 M, the strongest acid is :
 (1) HA (2) HB (3) HC (4) HD
- Q.121 pH values of two acids A and B are 4 and 5. The strengths of these two acids are related as :-
 - (1) The strengths of the two acids cannot be compared.
 - (2) Acid B is 10 times stronger than acid A.
 - (3) Strength of acid A: Strength of acid B = 4:5
 - (4) Acid A is 10 times stronger than acid B.
- Q.122 What is the pH of 1 M CH₃COONa solution? Ka of acetic acid = 1.8×10^{-5} , K_w= 10^{-14} mol² L⁻² (1) 2.4 (2) 3.6 (3) 4.8 (4) 9.4

BUFFER SOLUTION & INDICATORS

- Q.123 The volume of 0.2 M NaOH needed to prepare a buffer of pH 4.74 with mL of 0.2 M acetic acid $(pK_b \text{ of } CH_3COO^- = 9.26) \text{ is :}$ (1) 50 mL (2) 25 mL (3) 20 mL (4) 10mL
- **Q.124** What will be the pH of the solution, if 0.01 moles of HCl is dissolved in a buffer solution containing 0.02 moles of propanoic acid (Ka = 1.34×10^{-5}) and 0.0152 moles of salt, at 25°C : [log (0.173) = -0.76]

(1) 3.11 (2) 4.11 (3) 5.11 (4) 6.11

- **Q.125** $\frac{N}{10}$ acetic acid was titrated with $\frac{N}{10}$ NaOH. When 25%, 50% and 75% of titration is over then the pH of the solution will be :- [Ka = 10⁻⁵] (1) 5 + log 1/3, 5, 5 + log 3 (2) 5 + log 3, 4, 5 + log 1/3 (3) 5 - log 1/3, 5, 5 - log 3 (4) 5 - log 1/3, 4, 5 + log 1/3
- Q.126 In a buffer solution the ratio of concentration of NH₄Cl and NH₄OH is 1 : 1 when it changes in 2 : 1 what will be the value of pH of buffer:(1) Increase
 (2) Decrease
 (3) No effect
 (4) N.O.T.
- **Q.127** A buffer solution is prepared in which the concentration of NH_3 is 0.30 M and the concentration of NH_4^+ is 0.20 M. If K_b for NH_3 equals 1.8×10^{-5} . What is the pH of this solution? (1) 8.73 (2) 9.08

(1) 0.75	(2) 9.08
(3) 9.44	(4) 11.72

Q.128 pKb for NH₄OH at certain temperature is 4.74. The pH of basic buffer containing equimolar concentration of NH₄OH and NH₄Cl will be: -

(1) 7.74	(2) 4.74

Q.129 Which can act as buffer: -

(3) 2.37

- (1) NH₄OH + NaOH
- (2) HCOOH + CH₃COONa
- (3) 40 mL 0.1 M NaCN + 20 mL of 0.1 M HCl

(4) 9.26

- (4) None of them
- Q.130 The buffer solution play an important role in:-
 - (1) Increasing the pH value
 - (2) Decreasing the pH value
 - (3) Keeping the pH constant
 - (4) Solution will be neutral
- Q.131 Buffering action of a mixture of CH₃COOH and CH₃COONa is maximum when the ratio of salt to acid is equal to -

(1) 1.0	(2) 100.0
(3) 10.0	(4) 0.1

Q.132 The pink colour of phenolphthalein in alkaline medium is due to -

Negative ion	(2) Positive ion
(3) OH [–] ions	(4) Neutral form

Q.133 An acid indicator is represented by HI_n.(K_a = 10⁻ ⁶). The range of chage of colour for the indicator is

(1) 3-5 (2) 4-6 (3) 5-7 (4) 6-8

Q.134 A basic - buffer will obey the equation $pOH - pK_b = 1$ only under condition: -

(1) [Conjugate acid]: [base] = 1: 10

(2) [Conjugate acid] = [base]

(3) [Conjugate acid]: [base] = 10: 1

(4) N.O.T

- Q.135 100 ml. of 0.1, M NaOH solution is titrated with 100 mL of 0.05 M H₂SO₄ solution. The pH of the resulting solution is : (For H₂SO₄, K_{a1} = ∞ , K_{a2} = 10⁻²)
 - (1) 7 (2) 7.2 (3) 7.4 (4) 6.8
- **Q.136** From the following in which titration methyl orange is a best indicator :-
 - (1) CH₃COOH + NaOH
 - (2) H₂C₂O₄ + NaOH
 - (3) HCl + NaOH
 - (4) $CH_3COOH + NH_4OH$
- Q.137 The total number of different kind of buffers obtained during the titration of H₃PO₄ with NaOH are :-

(2) 1

(4) 0

- (1) 3
- (3) 2
- **Q.138** A certain acidic buffer solution contains equal concentration of X^- and HX. The Kb for X^- is 10^{-10} . The pH of the buffer is :-

(1) 4	(2) 7
(3) 10	(4) 14

- Q.139 When 1.0 mL of dil. HCl acid is added to 100 mL of a buffer solution of pH 4.0. The pH of the solution
 - (1) Becomes 7
 - (2) Does not change
 - (3) Becomes 2
 - (4) Becomes 10

- Q.140 Which solution is not a buffer solution ?
 (1) NaCN (2 mole) + HCl (1 mole) in 5 L
 (2) NaCN (1 mole) + HCl (1 Mole) in 5 L
 (3) NH₃ (2 mole) + HCl (1 mole) in 5 L
 - (4) CH₃COOH (2 mole) + KOH (1 mole) in 5L
- Q.141 50 mL of 2N acetic acid mixed with 10 mL of 1N sodium acetate solution will have an approximate pH of $(K_a = 10^{-5}):-$ (1) 4 (2) 5 (3) 6 (4) 7

Q.142 Hunderson equation pH - pKa = 1 will be applicable to an acidic buffer when :-(1) [Acid] = [Conjugate base] (2) [Acid] × 10 = [Conjugate base] (3) [Acid] = [Conjugate base] × 10

(4) None of these

- **Q.143** 0.05 M ammonium hydroxide solution is dissolved in 0.001 M ammonium chloride solution. What will be the OH⁻ ion concentration of this solution : Kb(NH₄OH) = 1.8×10^{-5} (1) 3.0×10^{-3} (2) 9.0×10^{-4} (3) 9.0×10^{-3} (4) 3.0×10^{-4}
- Q.144 When 0.02 moles of NaOH are added to a litre of buffer solution, its pH changes from 5.75 to 5.80. What is its buffer capacity :-
 - (1) 0.4(2) 0.05(3) 0.05(4) 2.5
- **Q.145** Calculate the pH of a buffer prepared by mixing 300 cc of 0.3 M NH₃ and 500 cc of 0.5 M NH₄Cl. Kb for NH₃ = 1.8×10^{-5} :-
 - (1) 8.1187(2) 9.8117(3) 8.8117(4) None of these
- Q.146 Calculate the ratio of pH of a solution containing 1 mole of CH₃COONa + 1 mole of HCl per litre and of other solution containing 1 mole CH₃COONa + 1mole of acetic acid per litre :-

(1) 1 : 1	(2) 2 : 1
(3) 1 : 2	(4) 2 : 3

Q.147 Which of the following is not buffer solution?
(1) CH₃COOH/CH₃COONa
(2) HCI/NaCI
(3) HCOOH/HCOONa
(4) NH₄OH/NH₄CI

JEE 🗗 Sarthi KOTA

Q.148 When 20 mL of $\frac{M}{20}$ NaOH are added to 10 mL of	Q.15
$\frac{M}{10}$ HCl, the resulting solution will:-	
(1) Turn blue litmus red	
(2) Turn phenolphthalein solution(3) Turn methyl orange red	
(4) Will have no effect on either red or blue litmus	Q.15
Q.149 What is the suitable indicator for titration of NaOH and oxalic acid: -	Q.15
(1) Methyl orange(2) Methyl red(3) Phenolphthalein(4) Starch solution	
Q.150 Phenolphthalein does not act as an indicator for the titration between:-(1) YOU and U.SO	
(1) KOH and H₂SO₄(2) NaOH and CH₃COOH	Q.19
(3) Oxalic acid and KMnO $_4$	
(4) Ba(OH) ₂ and HCl	
Q.151 A Certain buffer solution contains equal	
concentration of X ⁻ and HX. The K _a HX is 10^{-8} .	Q.16
The pH of buffer is:	
(1) 3 (2) 8 (2) 11 (4) 14	
(3) 11 (4) 14	
ACID AND BASE	
Q.152 The conjugated acid of O^{-2} ion's is :-	
(1) O_2^+ (2) H^+ (3) H_3O^+ (4) OH^-	Q.16
Q.153 Amphoteric oxide is:- (1) NO ₂ (2) CO ₂	Q.16
(3) Al_2O_3 (4) (1) & (3) both	
Q.154 The strongest base among the following is	
(1) CI ⁻ (2) CH ₃ COO ⁻	
(3) HSO_4^- (4) NO_3^-	0.16
(3) HSO ₄ (4) NO ₃ Q.155 Ionization constant of AOH and BOH base one	Q.16
Q.155 Ionization constant of AOH and BOH base one	Q.16
Q.155 Ionization constant of AOH and BOH base one K_{b_1} and K_{b_2} . Their relation is $pK_{b_1} < pK_{b_2}$. Conjugate of following base, does not show	

Q.156 Select the species which can function as - Lewis base, bronsted acid and bronsted base:-				
	(a) H_2O (b) NH_4^+ (c) N^{-3} Correct code is :-			
	(1) Only a (3) a, c	(2) a, b (4) b, c		
Q.157	An example of Lewis ac (1) CaO (3) SO ₃	cid is:- (2) CH ₃ NH ₂ (4) None of these		
Q.158	In the reaction $NH_3 + H_3$	$H_2O \rightleftharpoons NH_4^+ + OH^-$ water		
	behaves as :- (1) Acid (2) Base (3) Neutral (4) Both acid & Base			
Q.159	Which acts as Lewis ba	se in the reaction		
	$BCl_3 +: PH_3 \longrightarrow Cl_3B \leftarrow$			
	(1) PH₃(3) Both 1 & 2	(2) BCl ₃ (4) None		
Q.160	In the dissociation, H_2A	$\Lambda \stackrel{\kappa_1}{\longleftarrow} H^+ + HA^-$		
	HA^{-}	$H^{+} + A^{-2}$		
	(1) K1 is equal to K2			
	(2) K1 is smaller than K			
	(3) K1 is greater than K(4) K1 is negligible	2		
Q.161	Which is the strongest	Lewis base :		
	(1) SbH ₃ (2) AsH ₃			
Q.162	Which of the following acid and a Bronsted ba (i) HCOO ⁻ (iii) O ⁻² (1) (i) and (ii) (3) (ii) and (iv)	(ii) NH₃ (iv) HSO₄ [–] (2) (ii) and (iii)		
Q.163	Conjugate base of hydr			
	(1) HN_3^- (2) N_3^-	(3) N3- (4) N_2^-		
Q.164	NH ₃ gas dissolves in ware reaction, water acts as	iter to give NH4OH, in this		
	(1) An acid	(2) A base		
	(3) A salt	(4) A conjugate base		

Q.165 In the reaction $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$, the				
conjugate acid-base pair is(1) NH_3 and H_2O (2) NH_3 and OH^- (3) H_2O and NH_4^+ (4) NH_4^+ and NH_3				
Q.166 When ammonia is added to water it decreases the concentration of which of the following ion (1) OH^- (2) H_3O^+ (3) NH_4^+ (4) None				
Q.167 The strongest acid among the following is -(1) $CIO_3(OH)$ (2) $CIO_2(OH)$ (3) $SO(OH)_2$ (4) $SO_2(OH)_2$				
Q.168 The mixed salt among the following is :-(1) $ _{CH(OH)COONa}$ (2) NaKSO4(3) CaCl2(4) All				
 Q.169 For two acids A and B, pKa1 = 1.2, pKa2 = 2.8 respectively in value, then which is true: - (1) A & B both are equally acidic (2) A is stronger than B (3) B is stronger than A (4) None of these 				
 Q.170 Which of the following example behave as a Lewis acid BF₃, SnCl₂, SnCl₄ :- (1) Stanus chloride, stanic chloride (2) BF₃, Stanus chloride (3) Only BF₃ (4) BF₃, stanus chloride, stanic chloride 				
Q.171 In the reaction $HNO_3 + H_2O \rightleftharpoons H_3O^+ + NO_3^-$, the conjugate base of HNO_3 is:-				
(1) H_2O (2) H_3O^+ (3) NO_3^- (4) H_3O^+ and NO_3^-				
Q.172 The two Bronsted bases in the reaction $HC_2O_4^- + PO_4^{3-} \rightleftharpoons HPO_4^{2-} + C_2O_4^{2-}$ are (1) $HC_2O_4^-$ and PO_4^{2-} (2) HPO_4^{2-} and $C_2O_4^{2-}$ (3) PO_4^{3-} and $C_2O_4^{-2}$ (4) $HC_2O_4^-$ and HPO_4^{2-}				
Q.173 Which one of the following is the weakest base:-(1) NaOH(2) NH4OH(3) Ca(OH)2(4) Ba(OH)2				

	Sarthi KOTA
Q.174 In which of the follow	ving reactions NH ₃ acts as
acid (1) NH ₃ + HCl \rightarrow NH ₄ C	I
(1) $\operatorname{NH}_3^+ \operatorname{HC} \rightarrow \operatorname{NH}_4^+$ (2) $\operatorname{NH}_3^+ \operatorname{H}^+ \rightarrow \operatorname{NH}_4^+$	1
(3) $NH_3 + Na \rightarrow NaNH_3$	$_{2}+\frac{1}{2}$ H ₂
(4) NH $_3$ cannot act as a	acid
Q.175 Consider the following	g reactions :-
(i) CO_3^{2-} + H ₂ O \rightleftharpoons HCC	D ₃ [−] + OH [−]
(ii) $CO_2 + H_2O \rightleftharpoons H_2CC$	03
(iii) $NH_3 + H_2O \rightleftharpoons NH_4$	ОН
(iv) HCl + H₂O , C l⁻ +	H ₃ O ⁺
Which of the pairs of r	eactions proves that water
is amphoteric in chara	
(1) (i) and (ii) (3) (iii) and (iv)	(2) (ii) and (iii) (4) (i) and (iii)
Q.176 Which of the following	
(1) Cu ²⁺	(2) AICl ₃
(3) CO ₂	(4) All the above
Q.177 CH ₃ COO ⁻ ion is a :-	
(1) Weak conjugate ba(2) Strong conjugate b	
(3) Weak conjugate a	
(4) Strong conjugate a	
Q.178 Which of the followi	ng is strongest conjugate
base	
(1) ClO ₄ -	(2) HCO₃ [−]
(3) F ⁻	(4) HSO ₄ -
Q.179 Which of the following (1) CN ⁻	g is not a Lewis base :- (2) ROH
(1) CN (3) NH₃	(2) KOH (4) AICl ₃
Q.180 Which of the following	
(1) NH ₄ Cl	(2) MgCl ₂
(3) CO ₂	(4) H ₂ O
Q.181 Aluminium chloride is	:-
(1) Bronsted Lowry ac	id
(2) Arrhenius acid	
(3) Lewis acid	

(4) Lewis base

IONIC EQUILIBRIUM

Q.182 Water is a :-

- (1) Protogenic solvent
- (2) Protophilic solvent
- (3) Amphiprotic solvent
- (4) Aprotic solvent

Q.183 Ammonium ion is :-

- (1) A conjugate acid
- (2) A conjugate base
- (3) Neither an acid nor a basic
- (4) Both an acid and a base

Q.184 Which of the following is not a correct statement

- Arrhenius theory of acids-bases is capable of explaining the acidic or basic nature of the substances in the solvents other than water
- (2) Arrhenius theory does not explain acidic nature of $AICl_3$
- (3) The aqueous solution of Na_2CO_3 is alkaline although it does not contain OH^- ions
- (4) Aqueous solution of CO_2 is acidic although it does not contain H^+ ions

Q.185 For the reaction $NH_4^+ + S^{-2} \rightleftharpoons NH_3 + HS^-, NH_3$ and

- S⁻² are a group of :-
- (1) Acids
- (2) Bases
- (3) Acid-base pair
- (4) None of these

EXE	RCISE-II			Analytical Questions
Q.1 Q.2	pH of the solution be explained by :- (1) Hydrolysis of bo (2) Hydrolysis of car (3) Hydrolysis of an (4) Hydrolysis of wa	tion ion	Q.8	 Addition of conc. HCl to saturated BaCl₂ solution precipitates BaCl₂, because: - (1) It follows from Le Chatelier's principle (2) of common-ion-effect (3) ionic product [Ba⁺⁺][Cl⁻] remains constant in saturated solution (4) At constant temperature, the product [Ba²⁺] [Cl⁻]² remains constant in a saturated
Q.3	CH ₃ COOH (K _a = 1.74 (1) 3.4 (3) 3.9		Q.9	solution. At 25° C, OH^{-} ion concentration in 10^{-5} M HCl(aq.) will be :- (1) Zero (2) 10^{-9} M (3) 10^{-5} M (4) 10^{-2} M
Q.4	value of KW at 90°C (1) 10^{-6} (3) 10^{-14} The correct represe	C is :- (2) 10^{-12} (4) 10^{-8} entation of solubility product	Q.10	The correct order of increasing solubility of AgClin (A) water(B) 0.1 M NaCl (C) 0.1 BaCl_2 (D) 0.1 M NH_3 is(1) $D > A > B > C$ (2) $D > C > B > A$
	of SnS ₂ is :- (1) [Sn ⁴⁺][S ^{2–}] ² (3) [Sn ⁴⁺][2S ^{2–}]	(2) [Sn ⁴⁺][S ^{2–}] (4) [Sn ⁴⁺][2S ^{2–}] ²	Q.11	(3) $B > A > D > C$ (2) $A > D > B > C$ The dissociation constant for water is $1 \times 10^{-14} \text{ mol}^2 \text{L}^{-2}$, what is the pH of a 0.001 M KOH solution (1) 10^{-11} (2) 10^{-3} (3) 3 (4) 11
Q.5		8 x 10 ⁻⁵ and K _b for NH₄OH is f ammonium acetate will be: (2) 4.75 (4) Between 6 and 7	Q.12	The solubility of A_2X_3 is y mol dm ⁻³ . Its solubility product is :- (1) $6y^4$ (2) $64y^4$ (3) $36y^5$ (4) $108y^5$
Q.6	salt MX ₂ at 25°C is	fluct Ksp of a sparingly soluble 1.0 × 10 ⁻¹¹ , the solubility of L^{-1} at this temperature	Q.13	The pKa of HNO ₂ is 3.37. The pH of HNO ₂ in its 0.01 mol L ⁻¹ aqueous solution will be :- (1) 5.37 (2) 2.69 (3) 1.69 (4) 0.69
	will be : (1) 2.46 \times 10 ¹⁴ (3) 2.60 \times 10 ⁻⁷	(2) 1.36×10^{-4} (4) 1.20×10^{-10}	Q.14	If solubility product of AgCl at 25° C is 5×10^{-13} then solubility of its :(1) 5×10^{-13} (2) 7.1×10^{-7} (3) 2.5×10^{-13} (4) 2.5×10^{-6}
Q.7	A solution of FeCl ₃ in (1) Acidic impurities (2) Ionisation (3) Hydrolysis of Fe (4) Dissociation		Q.15	The precipitate of CaF ₂ (K _{sp} = 1.7×10^{-10}) is obtained when equal volumes of the following are mixed? (1) 10^{-4} M Ca ²⁺ + 10^{-4} M F ⁻ (2) 10^{-2} M Ca ²⁺ + 10^{-3} M F ⁻ (3) 10^{-5} M Ca ²⁺ + 10^{-3} M F ⁻ (4) 10^{-3} M Ca ²⁺ + 10^{-5} M F ⁻

JEE 🗟 Sarthi ΚΟΤΔ

Q.16 Which statement is incorrect for solubility product (Ksp):-(1) Constant at constant temperature (2) It behave as equilibrium constant (1) 10⁻⁴⁹ M (3) It is more than zero for soluble salt (3) 10⁻²⁶ M (4) It's unit is M² always Q.17 When add 0.01 M HCl in aqueous solution of (1) zero acetic acid (3)7 (1) CH₃COO⁻ molar conc. is decrease (2) CH₃COOH molar conc. is decrease (3) CH₃COO⁻ molar conc. is increase (4) NOT (3) By mixing OH⁻ **Q.18** On passing H_2S gas through a solution of Cu^{+2} and Zn⁺² ions, CuS is precipitated first because:-(1) Solubility product of CuS is equal to the ionic product of ZnS; (2) Solubility product of CuS is equal to the solubility product of ZnS. (3) Solubility product of CuS is lower than the solubility product of ZnS. (4) Solubility product of CuS is greater than the solubility product of ZnS. **Q.19** At 298 K, the solubility of PbCl₂ is 2×10^{-2} mol L⁻ ¹ then $K_{sp} = ?$:-(1) 1×10^{-7} (2) 3.2×10^{-7} :-(3) 1×10^{-5} (4) 3.2 × 10⁻⁵ Q.20 The pH of saturated aqueous solution of Ba(OH)₂ is 10. If the K_{sp} of Ba(OH)₂ is 5 × 10⁻¹³, then the concentration of Ba²⁺ ions in the solution is (1) 1×10^{-5} (2) 1×10^{-3} (3) 5 × 10⁻⁵ $(4)1 \times 10^{-2}$ **Q.21** A solution of MgCl₂ in water has pH : (1) < 7 (2) > 7(3) 7 (4) 14.2 **Q.22** If solubility product of AB₂ is 4×10^{-12} then solubility is :-(1) 4×10^{-12} $(2) 10^{-12}$ solubility? (3) 1×10^{-4} (4) 2×10^{-4} Q.23 Which of the following salt undergo hydrolysis (1) CH₃COONa (2) KNO3

(4) K₂SO₄

(2) 10⁻⁵⁰ M (4) 10⁻²⁵ M

- Q.25 The pH of 1M NH₄Cl(aq) at 25°C should be : (2) between 6 and 7 (4) above 7
- Q.26 Ionic product of water increases with :-(1) Decreasing pressure (2) Increasing H⁺

 - (4) Increasing temperature
- Q.27 In III group what will be done to differentiate between Fe⁺³ and Cr⁺³ :--
 - (1) Increase the concentration of NH₄OH
 - (2) Increase the concentration of NH₄⁺ ion
 - (3) Decrease the concentration of OH⁻
 - (4) both (2) and (3)
- Q.28 Correct relation is :-

(1) pKa × pK _b = pK _w	(2) pKa + pK _b = pK _w
(3) pKa/pK _b = pK _w	(4) pKa – pK _b = pK _w

Q.29 If k_{sp} of CaF₂ in pure water is 1.70×10^{-10} , then find the solubility of CaF₂ in 0.10M NaF solution

(1) 1.70×10^{-10}	(2) 1.70 × 10 ⁻⁹
(3) 1.70 × 10 ⁻⁸	(4) 0.10 M

- **Q.30** To precipitate Zn in form of ZnS, Why NH₄OH is first added in the solution before H₂S gas is passed through it :-
 - (1) To convert Zn into Zn⁺²
 - (2) To reduce Zinc
 - (3) To decrease the dissociation of H₂S
 - (4) To increase the dissociation of H₂S
- Q.31 Which of the following salts has maximum (1) HgS, $K_{sp} = 1.6 \times 10^{-54}$ (2) PbSO₄, $K_{sp} = 1.3 \times 10^{-8}$ (3) ZnS, $K_{sp} = 7.0 \times 10^{-26}$ (4) AgCl, $K_{sp} = 1.7 \times 10^{-10}$

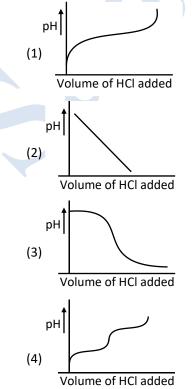
(3) NaCl

				RUIA
Q.32		1.8 × 10 ⁻⁵ . Find out the ion of 0.2M CH ₃ COOH in (3) 18 (4) 36	Q.41	Equal volumes of tree acid solutions of pH 3, 4 and 5 are mixed in a vessel. What will be the H ⁺ ion concentration in the mixture? (1) 1.11×10^{-4} M (2) 3.7×10^{-4} M
	weak base BOH is 4. solution of the corres (1) 9.58 (2) 4.79 Concentration of a	cid HA is 4.80. The pK _b of 78. The pH of an aqueous ponding salt BA will be : (3) 7.01 (4) 9.22 weak acid is 0.1 N and	Q.42	(3) 3.7×10^{-3} M (4) 1.11×10^{-3} M The pH of a 0.1 molar solution of the acid HQ is 3. The value of the ionization constant, Ka of this acid is :- (1) 1×10^{-7} (2) 3×10^{-7} (3) 1×10^{-3} (4) 1×10^{-5}
Q.35	$K_a = 10^{-5}$ then pH will (1) 4 (2) 3 pH of tomato juice is H_3O^+ will be :-	be :- (3) 2 (4) 5 4.4. Then concentration of	Q.43	The ionic product for water is $1 \times 10^{-14} \text{ mol}^2 \text{L}^{-2}$, what is the pH of a 0.001M KOH solution : (1) 10^{-11} (2) 10^{-3} (3) 3 (4) 11
Q.36	 (1) Conc. of OH⁻ incre (2) Conc. of NH₄⁺ decr (3) Conc. of OH⁻ decre 	ase reases eases	Q.44	Which buffer solution out of the following will have $pH > 7 :=$ (1) CH ₃ COOH + CH ₃ COONa (2) HCOOH + HCOOK (3) CH ₃ COONH ₄ (4) NH ₄ OH + NH ₄ Cl
Q.37	 (4) Dissociation of NH A salt is precipitated f (1) Solution is saturat (2) Ionic product > So (3) Ionic product < So (4) Solution is unsatur 	from a solution when :- ed lubility product lubility product		pH of 0.01N H ₂ SO ₄ is :- (1) 1.7 (2) 2.0 (3) 2.3 (4) 2.7 Which of the following is the strongest acid : (1) Ka = 1×10^{-7} (2) Ka = 1×10^{-5} (3) pKa = 9 (4) pKa = 3
Q.38	base $K_b = 10^{-6}$. The pH	id, K _a = 10 ⁻⁶ and for MOH H of 0.1 M MA salt solution	Q.47	(1) 13.0 (2) 12.7 (3) 11.2 (4) 1
Q.39	solubility of this comp		Q.48	0.015 g moles of NH ₄ OH and 0.025g moles of NH ₄ Cl are present in a solution then pH of mixture is :- (1) 9.0335 (2) 8.0335 (3) 9.665 (4) 8.665
Q.40	(3) $\sqrt[4]{1.6 \times 10^{-30} / 27}$	(2) $\sqrt[4]{1.6 \times 10^{-30}}$ (4) 1.6 × 10–30/27	Q.49	$K_{sp} = 1.0 \times 10^{-38}$? (1) 3.16×10^{-10} (2) 1.386×10^{-10}
	$HA \rightleftharpoons H^+ + A^-$	ution is 5. Its dissociation (2) 5 (4) 1 × 10 ⁻⁵	Q.50	(3) 1.45×10^{-9} (4) 1.12×10^{-11} An aqueous solution contains 10^{-4} [H ⁺]. If it isdiluted by mixing equal volume of water thenthe concentration of OH ⁻ in mol dm ⁻³ will be :-(1) 0.5×10^{-10} (2) 2×10^{-10} (3) 10^{-6} (4) 10^{-8}

JEE ⊮ Sarthi KOTA

IONIC EQUILIBRIUM

Q.51	Which of the follow acid :	ing is right for diprotic	
	(1) Ka ₂ > Ka ₁	(2) Ka ₁ > Ka ₂	
	(3) $Ka_2 > \frac{1}{Ka_1}$	(4) Ka ₂ = Ka ₁	
Q.52	aqueous buffer solution the acid is ionized is :-	(HA) is 4.5. The pOH of an of HA in which 50% of	
	(1) 2.5	(2) 9.5	
	(3) 7.0	(4) 4.5	
Q.53	pH of solution of 0.000	05M Ca(OH)₂ is :-	
	(1) 3.0	(2) –3.0	
	(3) 11.0	(4) 14.0	
Q.54	If pK_b of a base is 7.0, the will be	hen K_a of its conjugate acid	
	(1) 7	(2) 10 ⁷	
	(3) 10 ⁻⁷	(4) 10 ⁻¹⁴	
Q.55	pKa of Quinoline base pKa of 0.01M solution	is 4.88. What will be the of it	
	(1) 4.88 (2) 0.01	(3) 9.12 (4) 14	
Q.56	The pH of an aqueous solution of HCl will be (1) 7	s solution of a 1×10^{-7} M :-	
	(2) slightly less than 7		
	(3) slightly greater tha(4) 1	n 7	
Q.57	H ₃ A is weak triprotic a	cid	
	$(K_{a_1} = 10^{-5}, K_{a_2} = 10^{-9}, K_{a_3})$	=10 ⁻¹³)	
		of 0.1 MH ₃ A (aq) solution?	
	where pX = - log X and	$X = \frac{\lfloor A \rfloor}{\lceil HA^{2^{-}} \rceil}$	


(1) 7 (2) 8

- 2) 8 (3) 9 (4) 10
- **Q.58** What is the hydronium ion concentraction of a 0.02 M solution of Cu²⁺ solution of copper (II) perchlorate? The acidity constant of the following reaction is 5×10^{-9} . $Cu^{2+}(aq.)+2H_2O(I) \rightleftharpoons Cu(OH)^+(aq.)+H_3O^+(aq.)$ (1) 1×10^{-5} (2) 7×10^{-4} (3) 5×10^{-4} (4) 1×10^{-4}

- **Q.59** A 1 L solution contains 0.2 M NH₄OH and 0.2 M NH₂Cl. If 1.0 mL of 0.001 M HCl is added to it (1) 2×10^{-5} (2) 5×10^{-10} (3) 2×10^{-3} (4) None of these
- **Q.60** A buffer solution is made up of acitec acid [pKa = 5] having conc. = 1.5 and sodium acetate having conc. = 0.15 M. What is the number of OH⁻ ions present in 1 litre solution?

(1)
$$10^{-10} N_A$$
 (2) $10^{-4} N_A$
(3) $10^{-3} N_A$ (4) $10^{-6} N_A$

Q.61 When 100 mL of 0.1 M NaCN solution is titrated with 0.1 M HCl solution the variation of pH of solution with volume of HCl added will be :

- Q.62 1.0 L solution is prepared by mixing 61 gm benzoic acid (pKa = 4.2) with 72 gm of soldier benzoate and then 300 mL M HBr solution was added. The pH of final solution is :

 (1) 3.6
 (2) 3.8
 (3) 4.2
 (4) 4.8
- Q.63At 90°C, pure water has $[H^+] = 10^{-6}$ M, if 100 mlof 0.2 M HNO3 is added to 20 ml of 1 M NaOH at90°C then pH of the resulting solution will be(1) 5(2) 6(3) 7(4) None of these

Q.64 When 0.02 moles of NaOH are added to a litre of buffer solution, its pH chages from 5.75 to 5.80. What is its buffer capacity :(1) 0.4 (2) 0.05 (2) 0.05 (4) 2.5

(1) 0.4 (2) 0.05 (3) -0.05 (4) 2.5

- **Q.65** What amount sodium propanoate should be added to one litre of an aqueous solution containing 0.02 mole of propanoic acid (K_a = 3 × 10^{-5} at 25°C) to obtain a buffer solution of pH 4.7 (1) 4.52 × 10^{-2} mol (2) 3.52 × 10^{-2} mol (3) 2.52 × 10^{-2} mol (4) 3 × 10^{-2} mol
- **Q.66** In a buffer solution the ration of concentration of NH₄Cl and NH₄OH is 1 : 1. When it changes in 2 : 1, what will be the value of pH of buffer ?
 - (1) Increase(2) Decrease(3) No Effect(4) None
- **Q.67** A 20.0 mL sample of a 0.20 M solution of the weak diprotic acid H_2A is titrated with 0.250 M NaOH. The solution of the second equilvalent point is :
 - (1) 0.10 M NaHA (2) 0.153 M Na₂A (3) 0.10 M Na₂A (4) 0.0769 M Na₂A
- **Q.68** During the titration of a weak diprotic acid (H₂A) against a strong base (NaOH), the pH of the solution half-way to the first equivalent point and that at the first equivalent point are given respectively by :

(1)
$$pK_{a_1}$$
 and $pK_{a_1} + pK_a$

(2)
$$\sqrt{pK_{a_1}}$$
 and $\frac{pK_{a_1}}{2}$

(3) pK_{a1} and
$$\frac{pK_{a1}+p}{2}$$

(4) pK_a, and pK_a,

- Q.69 Phenolphthalein does not act as an indicator for the titration between :(1) KOH and H₂SO₄
 (2) NaOH and CH₃COOH
 - (3) Oxalica acd and KMnO₄
 - (4) Ba(OH)₂ and HCl
- **Q.70** One litre of saturated of CaCO₃ is evaporated to dryness, 7.0 g of residue is left. The solubility product for CaCO₃ is :-

1)
$$4.9 \times 10^{-3}$$
(2) 4.9×10^{-5} 3) 4.9×10^{-9} (4) 4.9×10^{-7}

Q.71 A₃B₂ is a sparingly solution salt of molar mass M (g mol⁻¹) and solubility x g lit⁻¹. The ration of the molar concentration of B³⁻ to the solubility product of the salt is

(1)
$$108 \frac{x^5}{M^5}$$
 (2) $\frac{1}{108} \frac{M^4}{x^4}$
(3) $\frac{1}{54} \frac{M^4}{x^4}$ (4) None

- **Q.72** What will happn if the pH of the solution of 0.001 M Mg(NO₃)₂ solution is adjusted to pH = 9 (K_{sp} of Mg(OH)₂ = 8.9×10^{-12}) (1) ppt will take place (2) ppt will not take place (3) Solution will be saturated
 - (4) None of these
- **Q.73** Na₃PO₄ which should be added in 10 L of 1.0×10^{-5} M - BaCl₂ Solution without any precipitation (1) 2 × 10⁻⁴ (2) 0.328 gm (3) 0.164 gm (4) 0.82 gm

EXERCISE-III

JEE-MAIN

- Q.1 The solubility in water of a sparingly soluble salt AB₂ is 1.0×10^{-5} mol L⁻¹. Its solubility product will be [AIEEE-2003] (1) 1×10^{-15} (2) 1×10^{-10} (3) 4×10^{-15} (4) 4×10^{-10}
- **Q.2** The solubility of Mg(OH)₂ is x mole/lit. then its solubility product is [AIIEEE-2002] (1) x^3 (2) $5x^3$ (3) $4x^3$ (4) $2x^2$
- **Q.3** The molar solubility in mol L⁻¹ of a sparingly soluble salt MX₄ is 's'. The corresponding solubility procuct is K_{SP} 's' given in terms of K_{SP} by relation : [AIEEE-2004] (1) s = $(K_{SP} / 128)^{1/4}$ (2) s = $(128K_{SP})^{1/4}$ (3) s = $(256K_{SP})^{1/5}$ (4) s = $(K_{SP} / 256)^{1/5}$
- **Q.4** The solubility product of a salt gaving general formula MX_2 , in water is : 4×10^{-12} . The concentration of M^{2+} ions in the aqueous solution of the salt is [AIEEE-2005] (1) 1.0×10^{-4} M (2) 2.0×10^{-6} M (3) 4.0×10^{-10} M (4) 1.6×10^{-4} M
- Q.5 Hydrogen ion concentration in mol/L in a solution of pH = 5.4 will be [AIEEE-2005] (1) 3.88×10^{6} (2) 3.98×10^{8} (3) 3.98×10^{-6} (4) 3.68×10^{-6}
- Q.6 In a saturated solution of the sparingly soluble strong electrolyte AgIO₃ (molecular mass = 283) the equilibirium which sets in is [AIEEE-2005]
 - $\mathsf{AglO}_{3} \rightleftharpoons \mathsf{Ag}_{(\mathsf{aq})}^{+} + \mathsf{IO}_{3(\mathsf{aq})}^{-}$

If the solubility product constant K_{sp} of AgIO₃ at a at a given temperature is 1.0×10^{-8} , what is the mass of AgIO₃ contained in 100 ml of its saturated solution ?

(1) 28.3×10^{-2} g (2) 2.83×10^{-3} g

(3) 1.0×10^{-7} g (4) 1.0×10^{-4} g

Q.7 The pKa of a weak acid, HA, is 4.80. the pKb of a weak base, BOH, is 4.78. The pH of an aqueous solution of the corresponding salt, BA, will be -

[AIEEE-2008]

(1) 9.58 (2) 4.79 (3) 7.01 (4) 9.22

- **Previous Year Questions**
- **Q.8** Solid $Ba(NO_3)_2$ is gradually dissolved in a 1.0 × 10^{-4} M Na_2CO_3 solution. At what concentration of Ba^{2+} will a precipitate begin to form?

[AIEEE-2009]

(1) 8.1×10^{-8} M	(2) 8.1×10^{-7} M
(3) 4.1 × 10 ⁻⁵ M	(4) 5.1 × 10 ^{−5} M

- **Q.9** Solubility product of silve bromide is 5.0×10^{-13} . The quantity of potassium bromide (molar mass taken as 120 g mol⁻¹) to be added to 1 litre of 0.05 M solution silver mitrate to start the precipitation of AgBr is :- [AIEEE-2010] (1) 5.0×10^{-8} g (2) 1.2×10^{-10} g (3) 1.2×10^{-9} g (4) 6.2×10^{-5} g
- **Q.10** In aqueous solution the ionization constants for carbonic acid are

 $K_1 = 4.2 \times 10^{-7}$ and $K_2 = 4.2 \times 10^{-11}$ [AIEEE-2010] Select the correct statement for a saturated 0.034 M solution of the carbonic acid :-

(1) the concentration of $H^{\scriptscriptstyle +}$ is double that of $CO_3{}^{2-}$

(2) The concentration of CO_3^{2-} is 0.034 M

(3) The concentration of CO_3^{2-} is greater than that of HCO_3^{-}

(4) The concentration of H^+ and HCO_3^- are approximately equal

Q.11 At 25°C, the solubility product of Mg(OH)₂ is 1.0 \times 10⁻¹¹. At which pH, will Mg²⁺ ions start precipitating in the form of Mg(OH)₂ from a solution of 0.001 M Mg²⁺ ions ions ?

[AIEEE-2010]

(1) 8 (2) 9 (3) 10 (4) 11 Q.12 The K_{sp} for $Cr(OH)_3$ is 1.6×10^{-30} . The molar solubility of this compound in water is :-

[AIEEE-2011]

(1) $\sqrt[2]{1.6 \times 10^{-30}}$ (2) $\sqrt[4]{1.6 \times 10^{-30}}$ (3) $\sqrt[4]{1.6 \times 10^{-30}/27}$ (4) $1.6 \times 10^{-30}/27$

Q.13An acid HA ionizes as $HA \rightleftharpoons H^+ + A^-$ The pH of 1.0 M solution is 5. Its dissociation
constant would be :-[AIEEE-2011](1) 1×10^{-10} (2) 5(3) 5×10^{-8} (4) 1×10^{-5}

- **Q.14** If K_{sp} of CaF_2 at 25°Cis 1.7 × 10⁻¹⁰, the combination amongst the following which gives a precipitate of CaF_2 is :-[JEE-MAIN(online)-2012] (1) 1×10^{-2} M Ca^{2+} and 1×10^{-5} M F⁻ (2) 1×10^{-4} M Ca^{2+} and 1×10^{-4} M F⁻ (3) 1×10^{-3} M Ca^{2+} and 1×10^{-5} M F⁻ (4) 1×10^{-2} M Ca^{2+} and 1×10^{-3} M F⁻ **Q.15** The pH of a 0.1 molar solution of the acid HQ is
- Q.15
 The pH of a 0.1 molar solution of the acid HQ is

 3. The value of the ionization constant, Ka of this acid is : [AIEEE-2012]

 (1) 1×10^{-7} (2) 3×10^{-7}

 (3) 1×10^{-3} (4) 1×10^{-5}
- Q.16 How many litres of wter must be added to 1 litre of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2 ? [AIEEE-2013]

(1) 0.1 L (2) 0.7 L (3) 2.0 L (4) 9.0 L

Q.17 Solid Ba(NO₃)₂ is gradually dissolved in a 1.0 × 10^{-4} M Na₂CO₃ solution. At which concentration of Ba²⁺, precipitate of BaCO₃ begins begins to from ? (K_{sp} for BaCO₃ = 5.1 × 10⁻⁹)

[JEE-MAIN(online)-2013]

(1) 5.1 × 10 ⁻⁵ M	(2) 8.1 × 10 ⁻⁷ M
(3) 4.1 × 10 ⁻⁵ M	(4) 7.1 × 10 ^{–8} M

Q.18 NaOH is a strong base. What will be pH of 5.0×10^{-2} M NaOH solution ? (log2 = 0.3)

[JEE-MAIN(online)-2013]

(1) 13.70 (2) 13.00 (3) 14.00 (4) 12.70

Q.19 Which of of the following arrangements repredents the correct order of solubilituies of spartingly soluble salts Hg₂Cl₂₊, Cr₂(SO₄)₃, BaSO₄ and CrCl₃ respectively ?

[JEE-MAIN(online)-2013]

$$(1) \left(\frac{K_{SP}}{4}\right)^{\frac{1}{3}}, \left(\frac{K_{SP}}{108}\right)^{\frac{1}{5}}, \left(K_{SP}\right)^{\frac{1}{2}}, \left(\frac{K_{SP}}{27}\right)^{\frac{1}{4}}$$

$$(2) \left(K_{SP}\right)^{\frac{1}{2}}, \left(\frac{K_{SP}}{4}\right)^{\frac{1}{3}}, \left(\frac{K_{SP}}{27}\right)^{\frac{1}{4}}, \left(\frac{K_{SP}}{108}\right)^{\frac{1}{5}}$$

$$(3) \left(K_{SP}\right)^{\frac{1}{2}}, \left(\frac{K_{SP}}{108}\right)^{\frac{1}{5}}, \left(\frac{K_{SP}}{27}\right)^{\frac{1}{4}}, \left(\frac{K_{SP}}{4}\right)^{\frac{1}{3}}$$

$$(4) \left(\frac{K_{SP}}{108}\right)^{\frac{1}{5}}, \left(\frac{K_{SP}}{27}\right)^{\frac{1}{4}}, \left(K_{SP}\right)^{\frac{1}{2}}, \left(\frac{K_{SP}}{4}\right)^{\frac{1}{3}}$$

Q.20 What would be the pH of a solution obtained by mixing 5 g of acetic acid and 7.5 g of sodium acetate and making the volume equal to 500 mL? [JEE-MAIN(online)-2013] (ka = 1.75×10^{-5} , pKa = 4.76)

(1) 4.76 < pH < 5.0

(2) pH < 4.70

(3) pH of solution will be equal to pH of acetic acid

(4) pH = 4.70

Q.21 In some solution, the concentration of H₃O⁺ remains constant even when small amounts of strong acid or strong base are added to them. Tehse solutios are known as:

[JEE-MAIN(online)-2014]

(1) Colloidal solution(2) True solutions(3) Ideal solutions(4) Buffer soutions

Q.22 Zirconium phosphate [Zr₃(PO₄)₄] dissociates into three zirconium cations of charge +4 and four phosphate anions of charge -3. If molar solubility of zirconium phosphate is denoted by S and its solubility prduct by K_{sp} then which of the following relationship between S and K_{sp} is correct? [JEE-MAIN(online)-2014]

(1) S = { $K_{sp}/144$ } ^{1/7}	(2) S = { $K_{sp}/(6912)^{1/7}$ }
(3) S = { $K_{sp}/(6912)^{1/7}$	(4) S = $\{K_{sp}/6912\}^7$

 $\label{eq:Q.23} \begin{array}{l} \mbox{pKa of a weak acid (HA) and pK_b of a weak base} \\ \mbox{(BOH) are 3.2 and 3.4, respectively. The pH of} \\ \mbox{their salt (AB) solution is} \end{array}$

(1) 7.2 (2) 6.9

[JEE-MAIN(online)-2017] (3) 7.0 (4) 1.0

Q.24 Addition of sodium hydroxide solution to a weak acid (HA) results in a buffer of pH 6. If ionization constant of HA is 10⁻⁵. The ration o fsalt to acid concentration in the buffer solution will be : [JEE-MAIN(online)-2017]

(1) 4 : 5 (2) 1 : 10 (3) 10 : 1 (4) 5 : 4

- Q.25 50 mL of 0.2 M ammonia solution is treated with 25 mL of 0.2 M HCl. If pK_b of ammonia solution is 4.75, the pH of the mixture will be :-(1) 8.25 (2) 4.75 (3) 9.25 (4) 3.75
- Q.26 Which of the following salts is the most basic in aqueous solution ? [JEE-MAIN(online)-2018]
 (1) CH₃COOK (2) FeCl₃
 (3) Pb(CH₃COO)₂ (4) Al(CN)₃

Q.27 An alkali is titrated against an acid wihth methyl orange as indicator, which of the following is a correct combination? [JEE-MAIN(online)-2018]

Base	Acid	End point
(1) Strong	Strong	Pinkinsh red to yellow
(2) Weak	Strong	Yellow to Pinkish red

- (3) Strong Strong Pink to colourless
- (4) Weak Strong Colourless to pink
- **Q.28** An aqueous solution contains 0.10 M H₂S and 0.20 M HCl. If equilibrium constants for the formation of HS⁻ from H₂S is 1.0×10^{-7} and that of S²⁻ from HS⁻ ions is 1.2×10^{-13} then the concentration of S²⁻ ions in aqueous solution is :-

[JEE-MAIN(offline)-2018]

(1) 3 × 10 ⁻²⁰	(2) 6 × 10 ⁻²¹
(3) 5 × 10 ⁻¹⁹	(4) 5 × 10 ⁻⁸

Q.29 A aqueous solution contains an unknown concentration of Ba^{2+} . When 50 mL of a 1 M solution of Na_2SO_4 is added, $BaSO_4$ just begins to precipitate. The final volume is 500 mL. the solubility product of $BaSO_4$ is 1×10^{-10} . What is the original concentration of Ba^{2+} ?

[JEE-MAIN(offline)-2018]

- (1) 2×10^{-9} M (3) 1.0×10^{-10} M
- (2) 1.1×10^{-9} M (4) 5×10^{-9} M
- Q.30 Following four solutions are prepared by mixing different volumes of NaOH and H?Cl of different concentrations, pH of which one of them will be equl to 1 ? [JEE-MAIN(online)-2018]

(1)
$$75mL\frac{M}{5}HCl + 25mL\frac{M}{5}NaOH$$

(2) $100mL\frac{M}{10}HCl + 100mL\frac{M}{10}NaOH$
(3) $55mL\frac{M}{10}HCl + 45mL\frac{M}{10}NaOH$
(4) $60mL\frac{M}{10}HCl + 40mL\frac{M}{10}NaOH$

- Q.31The minimum volume of wqter required to
dissovbe 0.1 g lead (II) chloride to get a saturated
solution (K_{sp} of PbCl₂ = 3.2 × 10⁻⁸; atomis mass of
Pb = 207 u) is :[JEE- MAIN(online)-2018]
(1) 0.36 L
(2) 0.18 L
(3) 17.98 L
- **Q.32** If K_{sp} of Ag_2CO_3 is 8×10^{-12} , the molar solubilituy of Ag_2CO_3 in 0.1 M AgnO₃ is :

[JEE-MAIN(online)-2019]

(1) 8×10^{-12} M	(2) 8×10^{-10} M
(3) 8 × 10 ⁻¹¹ M	(4) 8 × 10 ⁻¹³ M

Q.33 25 mL of the given HCl solution requires 30 mL of 0.1 M sodium carbonate soluion. What is the volume of this HCl solution required to titrate 30 mL of 0.2 M aqueous NaOh solution ?

[JEE-MAIN(online)-2019]

(1) 25 mL	(2) 50 mL
(3) 12.5 mL	(4) 75 mL

- **Q.34** A mixture of 10 m mol of Ca(OH)₂ and 2g of soldium sulphate was dissolved in water and the volume ws made up to 100 mL. The mass of calcium salphate formed and the concentration fo OH⁻ in resulting solution, respectively, are : (Molar mass of Ca(OH)₂, Na₂SO₄ and CaSO₄ are 74, 143 and 136 g mol⁻¹, respectively; K_{sp} of Ca(OH)₂ is 5.5×10^{-6}) (1) 1.9 g, 0.14 mol L⁻¹ (2) 13.6 g, 0.14 mol L⁻¹
 - (3) 1.9 g, 0.28 mol L⁻¹ (4) 13.6 g, 0.28 mol L⁻¹
- **Q.35** The pH of rain water, is approximately :

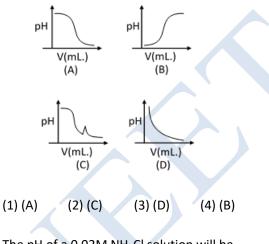
[JEE-MAIN(online)-2019]

(1) 6.5	(2) 7.5
(3) 5.6	(4) 7.0

Q.36 20 mL of 0.1 M H₂SO₄ solution is added to 30 mL of 0.2 M NH₄OH solution. The pH of the resulatant mixture is : $[pK_b \text{ of } NH_4OH = 4.7]$.

[JEE-MAIN(online)-2019]

(1) 9.4 (2) 5.0 (3) 9.0 (4) 5.2



Q.37 If solubility product of Zr₃(PO₄)₄ is denoted by K_{sp} and its molar solubility is denoted by S, then which of the following relation between S and k_{sp} is correct

(1)
$$S = \left(\frac{K_{sp}}{929}\right)^{\frac{1}{9}}$$

(2) $S = \left(\frac{K_{sp}}{216}\right)^{\frac{1}{7}}$
(3) $S = \left(\frac{K_{sp}}{144}\right)^{\frac{1}{6}}$

(4)
$$S = \left(\frac{K_{sp}}{6912}\right)^{\frac{1}{7}}$$

Q.38 In an acid-base titration, 0.1 M HCl solution was added to the NaOH solution fo unknow strength. Which of the following correctly shows the chage of pH of the titrction mixture in this experiment?

Q.39 The pH of a 0.02M NH₄Cl solution will be [JEE-MAIN(ONLINE)-2019]

> [given $K_b(NHOH) = 10^{-5}$ and log2 = 0.301] (1) 4.65 (2) 5.35 (3) 4.35 (4) 2.65

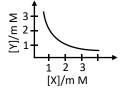
Q.40 The molar solubility of $Cd(OH)_2$ is 1.84×10^{-5} M in water. The expected solubility of $Cd(OH)_2$ in a buffer solution of pH = 12 is :

[JEE-MAIN(online)-2019]

(1) 6.23×10^{-11} M (2) 1.84×10^{-9} M (3) $\frac{2.49}{1.84} \times 10^{-9}$ M (4) 2.49×10^{-10} M Q.41 Two solutions A and B, each of 100 L was made by dissobing 4g of NaOh and 9.8 g of H₂SO₄ in water, respectively. The pH of the resultant solutions obtained from mixing 40 L of solution A and 10 L of solution B is ____.

[JEE-MAIN(online)-2020]

Q.42 3g of acetic acid is added to 250 mL of 0.1 M HCl and the solution made up to 500 mL. To 20 mL of theis solution $\frac{1}{2}$ mL of 5 M NaOh is added.


The pH of the solution is

[JEE-MAIN(online)-2020]

[Given : pKa of acetic acid = 4.75, molar mass of acetic acid = 60g/mol, log3 = 0.4771] neglect any chagen in volume

Q.43 The stoichiometry and solubility of a salt with the solubility curve below is, respectively

[JEE-MAIN(online)-2020]

(1) X ₂ Y, 2 × 10 ⁻⁹ M ³	(2) XY ₂ , 1×10^{-9} M ³
(3) XY ₂ , 4 × 10 ⁻⁹ M ³	(4) XY, 2 × 10 ⁻⁶ M ³

Q.44 For the following Assertion and Reason, the correct option is : [JEE-MAIN(online)-2020]
 Assertion : The pH of water increases with increase in temperature.

Reason : The dissociation of water into ${\rm H^+}$ and ${\rm OH^-}$ is an exothermic reaction.

- both assertion and reason are true, but the reason is not the correct explanation fotr the assertion.
- (2) Both assertion and reason are false
- (3) Assertion is not true, but reason is true
- (4) both assertion and reason are true, and the reason is the correct explanation for the assertion.

IONIC EQUILIBRIUM

Q.45 The Ksp for the following dissociation is 1.6×10^{-5} [JEE-MAIN(online)-2020]

$$PbCl_{2(s)} \rightleftharpoons Pb_{(aq)}^2 + 2Cl_{(aq)}^-$$

Which of the following choices is correct for a mixture of 30 mL 0.134 M $Pb(NO_3)_2$ and 100 mL 0.4 M NaCl ?

- (1) Q < K_{sp}
- (2) Q > K_{sp}
- (3) $Q = K_{sp}$
- (4) Not enough data provided
- **Q.46** The solubility of $Cr(OH)_3$ At 298 K is 6.0×10^{-31} . The concentration of hydroxide ions in a saturated solution of $Cr(OH)_3$ will be :

[JEE-MAIN(online)-2020]

(1) $(18 \times 10^{-31})^{1/4}$	(2) $(2.22 \times 10^{-31})^{1/4}$
(3) (4.86 × 10 ⁻²⁹) ^{1/4}	(4) (18 × 10 ⁻³¹) ^{1/2}

JEE-ADVANCE

- Q.47 What will be the resultant pH when 200 ml of an aqueous solution of HCl (pH = 2.0) is mixed with 300 ml of an aqueous solution of NaOH (pH = 12.0)?
 [JEE-1998]
- **Q.48** The pH of 0.1 M solution of the following salts increases in the order
 - (1) NaCl < NH₄Cl < NaCN < HCl
 - (2) HCl < NH₄Cl < NaCN < NaCN
 - (3) NaCN < NH₄CI < NaCI < HCI
 - (4) HCl < NaCl < NaCN < NH₄Cl
- Q.49 A buffer solution can be prepared from a mixture of
 - (1) Sodium acetate and acetic acid in water
 - (2) Sodium acetate and hydrochloric acid in water
 - (3) ammonia and ammonium chloride in water
 - (4) ammonia and sodium hydroxide in water.
- **Q.50** The solubility of $Pb(OH)_2$ in water is 6.7×10^{-6} M. Calculate the solubility of $Pb(OH)_2$ in in a buffer solution of pH = 8. [JEE-1999]

Q.51 The average concentration of SO_2 in the atmosphere over a city on a certain day is 10 ppm, when the average temperature is 298 K. Given that the solubility of SO_2 in water at 298 K is 1.3653 moles litre⁻¹ and the pKa of H_2SO_4 is 1.92, extimate the pH of rain on that day.

[JEE 2000]

[Given : $10^{-1.92} = 1.2 \times 10^{-2}$, $\sqrt{5.5678} = 2.5627$, log(1.2213) = 0.08668]

Q.52 For sparingly soluble salt ApBq. The relationship of its soubility product (L_s) with its solubiity (S) is –

[JEE 2001]

- (1) $L_s = S^{p+q}.p^p.q^q$ (2) $L_s = S^{p+q}.p^p.q^p$ (3) $L_s = S^{pq}.p^p.q^q$ (4) $L_s = S^{pq}.(p.q)^{p+q}$
- **Q.53** 500 ml of 0.2 M aqueous solution of acetuc acd is mixed with 500 mL of 0.2 M HCl at 25°C.
 - (a) Calculate the degree of dissociation of acetic acid in the resulting solution and pH of the solution.
 - (b) If 6 g of NaOH is added to the above solution, determine final pH. Assume there si no chage in volume on mixing. K_a of acetic acid is 1.75×10^{-5} M. [JEE-2002]
- Q.55 Will the pH of water be same at 4°C and 25°C? Explain [JEE 2003]

- **Q.56** 0.1 M of HA is titrated with 0.1 M NaOH, calculate the pH at end point. Given Ka(HA) = 5 × 10^{-6} and $\alpha << 1$. [JEE 2004]
- Q.57HX is a weak acid $(K_a = 10^{-5})$. It forms a salt NaX(0.1 M) on reacting with caustic soda. The
degree of hydrolysisof NaX is[JEE 2004](1) 0.01%(2) 0.0001%(3) 0.1%(4) 0.5%
- **Q.58** Ch₃NH₂(0.1 mole, $K_b = 5 \times 10^{-4}$) is added to 0.08 moles of HCl and the solution is diluted to one oitrem resulting hydrogen ion concentration is

[JEE 2005]

(1) 1.6 × 10 ⁻¹¹	(2) 8 × 10 ⁻¹¹
(3) 5 × 10 ⁻⁵	(4) 2 × 10 ⁻²

Q.59 if $Ag^+ + NH_3 \rightleftharpoons [Ag(NH_3)]^+$; $K_1 = 1.6 \times 10^3$ and $[Ag(NH_3)]^3 + NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$; $K_2 = 6.8 \times 10^3$ The formation constant of $[Ag(NH_3)_2]^+$ is : [JEE 2006]

(1) 6.08 × 10 ⁻⁶	(2) 6.8 × 10 ⁻⁶	
(3) 1.6 × 10 ³	(4) 1.088 × 10 ⁷	

- **Q.60** The species present in solution when CO₂ is dissoved in water :
 - (1) CO₂, H₂CO₃, HCO₃⁻, CO₃²⁻
 - (2) H₂CO₃, CO₃²⁻
 - (3) CO_3^{2-} , HCO_3^{-}
 - (4) CO₂, H₂CO₃

Q.61 2.5 mL of $\frac{2}{5}$ M weak monoacidic base (K_b = 1 ×

 10^{-12} at 25°C) is titrated with $\frac{2}{15}$ M HCl in water at 25°C. The concentration of H⁺ at equivalence point is [JEE 2008] (K_w = 1 × 10⁻¹⁴ at 25°C) (1) 3.7 × 10⁻¹³ M (2) 3.2 × 10⁻⁷ M (3) 3.2 × 10⁻² M (4) 2.7 × 10⁻² M **Q.62** Solubility product constants (K_{SP}) of salts of types MX, MX₂ and M₃X at temperature 'T' ar 4.0×10^{-8} , 3.2×10^{-14} and 2.7×10^{-15} , respectively. Solubilities (mol dm⁻³) of the salts at temperature 'T' are in the order : [JEE - 2008] (1) MX > MX₂ > M₃X (2) M₃X > MX₂ > MX (3) M₂X > M₃X > MX

(4) $MX > M_3X > MX_2$

Q.63 The dissociation constant of a substituted benzoic acid at 25°C is 1.0×10^{-4} . The pH of a 0.01 M solution of its sodium salt is

[JEE- 2009]

Q.64 Aqueous solutions of HNO₃, KOH₄ CH₃COOH and CH₃COONa of identical concentrations are provided. The pair(s) of solutions which form a buffer upon mixing is(are) -

(1) HNO₃ and CH₃COOH

- (2) KOH and CH₃COONa
- (3) HNO_3 and CH_3COONa
- (4) CH₃COOH and CH₃COONa
- **Q.65** In 1 L saturated solution of AgCl $[K_{sp}(AgCl) = 1.6 \times 10^{-10}]$, 0.1 mol of CuCl $[K_{sp}(CuCl) = 1.0 \times 10^{-6}]$ is added. The resultant concentration of Ag⁺ in the solution is 1.6×10^{-8} . The value of 'x' is.

[JEE - 2011]

Q.66 The initial rate of hydrolysis of methyl acetate (1M) by a weak acid (Ha, 1M) is 1/100th of that of a strong acid (HX, 1M), at 25°C. the K_a of HA is [JEE 2013]

(1) 1×10^{-4}	(2) 1 × 10 ⁻⁵
(3) 1 × 10 ⁻⁶	(4) 1 × 10 ⁻³

IONIC EQUILIBRIUM

Paragraph For Questions 68 and 69

When 100 mL of 1.0 M HCl was mixed with 100 mL of 1.0 M NaOH in an insulated beaker at constant pressure, a temperature increase of 5.7°C was measured for the beaker and its contents.

(Expt-1). Because the enthalpy of neutralization of a strong acid with a strong base is a constant (-57.0 kJmol⁻¹), this experiment could be used to measure the calorimeter constant. In a second experiment (Expt-2), 100 mL of 2.0 M acetic acid (K_a = 2.0×10^{-5}) was mixed with 100 mL of 1.0 M NaOH (under identical conditions to (Expt-1)) where a temperature rise of 5.6°C was measured.

(Consider heat capacity of all solutions as 4.2 $Jg^{-1}K^{-1}$ and density of all solutions as 1.0 g mL^-1)

Q.68 Enthalpy of dissociation (in kJ mol⁻¹) of acetic acid obtained from the Expt-2 is [JEE2015]
(1) 1.0
(2) 10.0
(3) 24.5
(4) 51.4

Q.69 The pH of the solution after Expt-2

(1) 2.0 (2) + 7 (3) 3.0 (4) 7	(1) 2.8) 4.7 (3) 5.	0 (4) 7.0
-------------------------------	---------	--------------	-----------

Q.70 The solubility of a salt of weak acid (AB) t pH 3 is $Y \times 10^{-3}$ mol L⁻¹. The value of Y is

(Given that the value of soubility product of $AB(K_{sp}) = 2 \times 10^{-10}$ and the value of ionization constant of $HB(K_a) = 1 \times 10^{-8}$) [JEE - 2018]

ANSWER KEY

							EXER	CISE-I							
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	4	2	3	4	4	3	1	2	4	1	2	4	4	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	4	4	1	1	1	1	3	4	1	2	3	4	1	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	2	1	4	4	4	2	3	4	2	3	3	3	3	3
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	2	3	3	4	2	4	4	4	2	3	2	1	1	3	3
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	3	4	4	1	3	4	1	2	3	2	3	2	2	4	2
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	2	4	3	3	1	2	2	3	4	1	1	1	4	4	2
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Ans.	4	3	1	1	2	2	3	3	3	1	2	2	4	2	2
Que.	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	1	2	2	2	2	1	1	3	2	1	2	3	1	3	1
Que.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
Ans.	4	4	2	2	1	2	3	4	3	3	1	1	2	3	2
Que.	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Ans.	3	1	1	2	2	1	2	2	1	3	3	2	4	3	3
Que.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165
Ans.	2	4	3	2	2	1	3	1	1	3	4	3	2	1	4
Que.	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans.	2	1	2	2	4	3	3	2	3	3	4	2	2	4	3
Que.	181	182	183	184	185										
Ans.	3	3	1	1	2										

EXERCISE-II

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	1	2	1	3	2	3	2	2	1	4	4	2	2	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	1	3	4	3	1	3	1	4	2	4	4	2	3	4
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	2	1	3	2	2	3	2	2	3	1	2	4	4	4	2
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	1	1	2	2	2	2	3	3	1	2	4	1	3	1
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73		
Ans.	3	1	2	1	4	2	4	3	3	1	3	2	2		

JEE 🗟
Sarthi
ΚΟΤΑ

	EXERCISE-III														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	3	4	1	3	2	3	4	3	4	3	3	1	4	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	1	4	1	1	4	3	2	3	3	1	2	1	2	1
Quo.	31	32	33	34	35	36	37	38	39	40	41	43	44	45	46
Ans.	2	2	1	3	3	3	4	1	2	4	10.6	3	2	2	1
Que.	48	49	52	54	56	57	58	59	60	61	62	63	64	65	66
Ans.	2	1,2,3	1	3	9	1	2	4	1	4	4	8	3, 4	7	1
Que.	67	68	69	70		-		-	-		-				
Ans.	2	1	2	4.47											
Q.42.	5.22 to	o 5.24		Q.4	Q.50 S = 1.203×10^{-3} M										
Q.51	pH = 0	.91325		Q.5	Q.53 (a) = 0.0175% (b) = 4.757 Q.5						No,	it will b	e > 7 at	0°C.	

Page | 68

JEE Module Details

(Total = 24)

CLASS - XII : 12 MODULES

	PHYSICS								
	Module - 1								
Ch. No.	Chapter Name								
1.	Electrostatics								
2.	Capacitor & R-C Circuit								
3.	Current Electricity								
Module - 2									
Ch. No.	Chapter Name								
1.	MEC								
2.	Magnetic Materials								
3.	Bar Magnets & Earth Magnetism								
4.	EMI								
5.	AC								
6.	EMW								
	Module - 3								
Ch. No.	Chapter Name								
1.	Ray Optics								
2.	Wave Optics								
	Module - 4								
Ch. No.	Chapter Name								
1.	Modern Physics								
2.	Nuclear Physics								
3.	Electronics - Semiconductor								
4.	Principles of Communication System								

CHEMISTRY		
	Module -1 (Physical)	
Ch. No.	Chapter Name	
1.	The Solid State	
2.	Solutions	
3.	Electrochemistry	
4.	Chemical Kinetics	
5.	Surface Chemistry	
Module -2 (Inorganic)		
Ch. No.	Chapter Name	
1.	The p -Block Elements	
2.	General Principles and Processes	
	of Isolation of Elements (Metallurgy)	
3.	The d - and f Block Elements	
4.	Coordination Compounds	
Module -3 (Organic)		
Ch. No.	Chapter Name	
1.	Halogen Derivatives	
2.	Oxygen Containing Compound	
3.	Nitrogen Containing Compound	
4.	Biomolecules, Polymers & Chemistry	
	Every Day Life	

MATHEMATICS

	Module - 1	
Ch. No.	Chapter Name	
1.	Functions	
2.	Inverse Trigonometric Functions	
3.	Matrix	
4.	Determinants	
Module - 2		
Ch. No.	Chapter Name	
1.	Limit	
2.	Continuity & Differentiability	
3.	MOD	
4.	AOD	

_			
		Module - 3	
	Ch. No.	Chapter Name	
	1.	Integration	
	2.	Area Under Curve	
	3.	Differential Equations	
		Module - 4	
	Ch. No.	Chapter Name	
	1.	Vectors	
	2.	3 - Dimensional Geometry	
	3.	Probability	
Module - 5			
	Ch. No.	Chapter Name	
	1.	H & D	
	2.	M. Reasoning	
	3.	Linear Programing	
	4.	Statistics	

Live Classes for NEET, JEE & NTSE

Ask Your Doubt

Through Audio In Running Class

