JEE Mains + Advance

CHEMSTRY

Chapter

IONIC EQUILIBRIUM

JEE Module Details

(Total = 24)

—— CLASS - XI : 12 MODULES

PHYSICS

Module-1
Ch. No. Chapter Name

1. Mathematical Tools
2. Vector
3. Unit, Dimension and Measurement
4. Kinematics
5. Newton's Laws of Motion Module - 2
Ch. No. Chapter Name
6. Work Power and Energy
7. Center of Mass \& Collision
8. Rotational Motion
9. Gravitation Module - 3
Ch. No. Chapter Name
10. Fluid Mechanics
11. Surface Tension
12. Elasticity \& Viscosity
13. Simple Harmonic Motion

Module - 4

Ch. No.	Chapter Name
1.	Thermometry \& Calorimetry
2.	Thermal Expansion
3.	Kinetic Theory of Gases
4.	Thermodynamics
5.	Heat Transfer

CHEMISTRY

Module-1

Ch. No.	Chapter Name
1.	Some Basic Concept of Chemistry
2.	Atomic Structure
3.	Redox Reactions
4.	States of Matter
Ch. No.	Chapter Name -2
1.	Chemical Equilibrium
2.	Ionic Equilibrium
3.	Chemical Thermodynamics \& Energetics

Ch. No.	Chapter Name
1.	Periodic Table and Periodic Properties

2. Chemical Bonding
3. Hydrogen and its compounds
4. s-Block elements
5. p-Block (13 to 14 groups)

Module-4
Ch. No. Chapter Name

1. IUPAC
2. Isomerism
3. GOC-I
4. Hydrocarbons
5. Environmental Chemistry

MATHEMATICS

Module - 1

Ch. No. Chapter Name

1. Set \& Relations
2. Trigonometric Ratios
$3 . \quad$ Trigonometric Equation
3. Solution of a Triangle

Module - 2
Ch. No. Chapter Name

1. Sequence and Series
2. Quadratic Equations and Inequalities
3. Complex Numbers
4. Limits \& Derivative

Module - 3

Ch. No. Chapter Name

1. Binomial Theorem
2. Permutations and Combinations
3. Straight Lines
4. Circle

Module-4
Ch. No. Chapter Name

1. Parabola
2. Hyperbola
3. Ellipse

NEET
 Sarthis
 KOTA

JEE : Chemistry

Sample Module

STUDENT NAME: \qquad

SECTION:
ROLL NO: \qquad

CONTENTS

Chapter No.	Topic	Page No.
1.	Introduction	01
2.	Arrhenius Concept	02
3.	Ostwald's Dilution Law	03
4.	Biodata Of Water	05
5.	pH Calculation Of Different Type Of Solution	07
6.	Weak Acid, Weak Base and their pH, Polyprotic acid	09
7.	SALTS, TYPES OF SALT AND CONJUGATE THEORY	13
8.	HYDROLYSIS OF SALTS	15
9.	SOLUBILITY AND SOLUBILITY PRODUCT (Ksp)	24
10.	APPLICATION OF SOLUBILITY PRODUCT (Ksp)	25
11.	pH INTRODUCTION	31
12.	BUFFER SOLUTION	32
13.	BUFFER CAPACITY	34
14.	OSTWALD THEORY OF INDICATORS	36
15.	ACID AND BASE CONCEPT	38
16.	BRONSTED-LOWRY CONCEPT (1923	39
17.	LEWIS CONCEPT (1939)	40
18.	EXERCISE-I	43-54
19.	EXERCISE-II	55-59
20.	EXERCISE-III	60-66
21.	Answer Key	67-68

PREFACE *

This module covers the theoretical concepts associated with NEET syllabus and contain sufficient multiple choice and previous year questions. We are confident that students would find this module helpful for their preparations.

Research \& Development team of NEET Sarthi keeps working to improve the study material. Suggestions and inputs from students and readers are always welcome.

About NEET Sarthi

NEET Sarthi, A platform for JEE, NEET, NTSE and other competitive exams, is an initiative by highly renowned faculties from Kota (the coaching capital of India) and Tech team from Bangalore (the Silicon Valley of India). Our mission is to provide extensive and high-quality education to students. Specially, our vision is to be top most institute in terms of academic quality \& student care.

Our top Faculties teaches students in 2-way online interactive classes. We create high quality questions and video solutions for NEET/ JEE preparation. Every time you use NEET Sarthi App for NEET \& NTSE and JEE Sarthi app for JEE mains \& advanced, you move one step closer to fulfill your dream to become a Doctor or Engineer!
"If you can dream it, you can do it"

NEET SARTHI (Brand owned by registered company)

Copyright © 2021 Sarthee Neet Guru Academy LLP, Kota (Raj.)

All rights reserved exclusively with Sarthee Neet Guru Academy LLP. No part of this publication may be reproduced, distributed, redistributed, copied or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of Sarthee Neet Guru Academy LLP.

Chapter-01

Ionic Equilibrium

- OSTWALD'S DILUTION LAW
- BIODATA OF WATER
- SALTS, TYPES OF SALT AND CONJUGATE THEORY
- HYDROLYSIS OF SALTS
- SOLUBILITY AND SOLUBILITY PRODUCT (Ksp)
- Buffer solution

Acid and Base concept

INTRODUCTION

Formulae:

(i) $\ln x=\log _{e} x=2.303 \log _{10} x=2.303 \log x$
(ii) $\log (x \times y)=\log x+\log y$
(iii) $\log \left(\frac{x}{y}\right)=\log x-\log y$
(iv) $\log x^{y}=y \log x$

Ex. (i) $\log 6=\log (2 \times 3)$

$$
\begin{aligned}
& =\log 2+\log 3 \\
& =0.3010+0.4771=0.7781
\end{aligned}
$$

(ii) $\log 30=\log (3 \times 10)$
$=\log 3+\log 10$
$=\log 0.4471+1=1.4471$
(iii) $\log 1000=\log 10^{3}$

$$
=3 \log 10=3 \times 1=3
$$

A. Some values of Log :
$\log 1=0$
$\log 2=0.3010$
$\log 3=0.4771$
$\log 4=0.6020$
$\log 5=0.699$
$\log 6=0.7781$
$\log 7=0.8451$
$\log 8=0.9030$
$\log 9=0.9542$
$\log 10=1$
$\log 11=1.04$
$\log 100=2$
$\log 1000=3$

Some terms which are used in ionic equilibrium:

Antilog: Antilog (x) $=10^{x}$
Ex. Antilog $(2)=10^{2}=100$

$$
\begin{aligned}
& \text { Antilog }(0.3010)=10^{0.3010}=2 \\
& \text { Antilog }[\log (2)]=\text { Antilog }(0.3010)=2
\end{aligned}
$$

pH - Scale: Given by - Sorenson
pH Scale is called Sorenson scale.
pH scale is a measuring scale used to measure strength of acid and base and its value is equal to $-\log \left[\mathrm{H}^{+}\right]$
i.e. $\quad \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=\log \frac{1}{\left[\mathrm{H}^{+}\right]}$

Ex. $\quad\left[\mathrm{H}^{+}\right]=10^{-3}$
$\mathrm{pH}=-\log 10^{-3}=+3 \log 10=3$
Conclusion:
If $\mathrm{pH}=\mathrm{x}$ then $\left[\mathrm{H}^{+}\right]=10^{-x}$
or Vice versa
i.e. If $\left[\mathrm{H}^{+}\right]=10^{-x}$ then $\mathrm{pH}=\mathrm{x}$
$\mathrm{pOH} \rightarrow$ It is equal to $-\log \left[\mathrm{OH}^{-}\right]$
i.e. $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=\log \frac{1}{\left[\mathrm{OH}^{-}\right]}$
pH scale at $25^{\circ} \mathrm{C}$:

Ex. 1 If $x=\frac{a}{b} \times 10^{-c}$, then find $p X$?
Sol. $p X=-\log x=-\log \left(\frac{a}{b} \times 10^{-c}\right)$
$p X=-\left[\log \frac{a}{b}+\log 10^{-c}\right]=-[\log a-\log b-c]$
$\mathrm{pX}=\mathrm{c}+\log \mathrm{b}-\log \mathrm{a}$

According to strength, ionic conductors are of two types -

(1) Strong electrolytes - Those ionic conductors which are completely ionized in aqueous solution are called as strong electrolytes.
Ex. $\mathrm{Na}^{+} \mathrm{Cl}^{-}, \mathrm{K}^{+} \mathrm{Cl}^{-}$, etc.
For strong electrolyte the value of degree of ionisation is 100% i.e. $\alpha=1$
Ex. (a) Strong acid $\rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{HClO}_{4}, \mathrm{HBr}, \mathrm{HI}$
(b) Strong base $\rightarrow \mathrm{KOH}, \mathrm{NaOH}, \mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{CsOH}, \mathrm{RbOH}$
(c) All Salts $\rightarrow \mathrm{NaCl}, \mathrm{KCl}, \mathrm{CuSO}_{4}$
(2) Weak electrolytes - Those electrolytes which are partially ionized in aqueous solution are called as weak electrolytes. For weak electrolytes the value of α is less than one.
Ex. (a) Weak acids $\rightarrow \mathrm{HCN}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HCOOH}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{~B}(\mathrm{OH})_{3}$, etc.

$$
\begin{gathered}
\downarrow \\
\mathrm{H}_{3} \mathrm{BO}_{3} \\
\text { (boric acid) }
\end{gathered}
$$

(b) Weak bases $\rightarrow \mathrm{NH}_{4} \mathrm{OH}, \mathrm{Cu}(\mathrm{OH})_{2}, \mathrm{Zn}(\mathrm{OH})_{2}, \mathrm{Fe}(\mathrm{OH})_{3}, \mathrm{Al}(\mathrm{OH})_{3}$ etc.

(A) ARRHENIUS CONCEPT:

(1) According to Arrhenius when an electrolyte dissolves in aqueous solution it spilts up into two oppositely charged particles i.e. cation and anion.
(2) In an electrolytic solution (Aqueous solution of electrolyte), total +ve charge = total -ve charge i.e. solution is electrically neutral.
\Rightarrow In an electrolytic solution number of +ve ions may or may not be equal to the number of negative ions.
(3) Properties of an electrolytic solution are defind by its ions.

Ex. Blue colour of CuSO_{4} aqueous solution is due to Cu^{+2} ion (dark blue colour)
(4) When electric current is pass in aqueous solution of electrolyte then cation shows migration towards cathode where as anion shows migration towards anode.
(5) Ionization is the reversible reaction. In it an equilibrium is set up between unionized moles and ionized moles. This condition of the reversible ionic reaction is known as ionic equilibrium.
$A B$ (Aq.) $\rightleftharpoons A^{+}$(Aq.) $+B^{-}$(Aq.)
According to Law of Mass Action (L.O.M.A.)
Ionisation constant $K=\frac{\left[\mathrm{A}^{+}\right]\left[\mathrm{B}^{-}\right]}{[\mathrm{AB}]}$

(B) OSTWALD'S DILUTION LAW

\Rightarrow Ostwald was the first to apply law of mass action to ionic equilibrium.
\Rightarrow Ostwald dilution law is applicable only for weak electrolytes.

Statement :

According to Ostwald when solution of weak electrolyte is diluted then degree of ionisation of solution is increased, is called dilution law.

Let

$$
\mathrm{AB}(\mathrm{aq} .) \rightleftharpoons \mathrm{A}^{+}(\mathrm{aq} .)+\mathrm{B}^{-}(\mathrm{aq} .)
$$

Initial concentration
C
0
0
Degree of ionisation (α) ($C-C \alpha$)
(C α)
(C α)
According to L.O.M.A.

Ionisation constant

$$
\mathrm{K}=\frac{\left[\mathrm{A}^{+}\right]\left[\mathrm{B}^{-}\right]}{[\mathrm{AB}]}
$$

$$
K=\frac{C \alpha \times C \alpha}{C(1-\alpha)}=\frac{C \alpha^{2}}{(1-\alpha)}
$$

If $\alpha \lll<1$ then $1-\alpha \simeq 1$

$$
K=C \alpha_{2} \text { or } \alpha=\sqrt{\frac{K}{C}} \quad(K=\text { constant, At constant temperature })
$$

$\alpha \propto \frac{1}{\sqrt{C}} \quad\left(\mathrm{C} \propto \frac{1}{V}\right)$
$\alpha \propto$
volume $=$ dilution $\quad \alpha \propto \sqrt{\text { dilution }} \quad$ by dilution law
dilution $\uparrow \alpha \uparrow$
At infinite dilution, $\alpha=100 \%$
Thus, for weak electrolytes the degree of ionisation is directly proportional to square root of dilution or inversely proportional to square root of concentration. This law is known as Ostwald Dilution Law.
Note: (1) At infinite dilution the value of α becomes equal to one.
(2) The value of concentration should be in terms of normality.

Application of Ostwald's Dilution Law :

$$
K=C \alpha^{2}
$$

(a) For mono basic weak acid (HA)	(b) For mono acidic weak base (BOH)
(i). Ionisation constant (K_{a})	(i). Ionisation constant (K_{b})
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$	$\mathrm{BOH} \rightleftharpoons \mathrm{B}^{+}+\mathrm{OH}^{-}$
Initial concentration C O 0	Initial concentration $\mathrm{C} \quad 00$
At equilibrium $\quad \mathrm{C}-\mathrm{C} \alpha \quad \mathrm{C} \alpha \quad \mathrm{C} \alpha$	At equilibrium $\quad \mathrm{C}-\mathrm{C} \alpha \quad \mathrm{C} \alpha \mathrm{C} \alpha$
If degree of ionisation is α	If degree of ionisation is α

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{\mathrm{C} \alpha \times \mathrm{C} \alpha}{\mathrm{C}-\mathrm{C} \alpha}$	$\mathrm{K}_{\mathrm{b}}==\frac{\mathrm{C} \alpha \times \mathrm{C} \alpha}{\mathrm{C}-\mathrm{C} \alpha}$
$\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{C}^{2} \alpha^{2}}{\mathrm{C}(1-\alpha)}=\frac{\mathrm{C} \alpha^{2}}{(1-\alpha)}$	$\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{C}^{2} \alpha^{2}}{\mathrm{C}(1-\alpha)}=\frac{\mathrm{C} \alpha^{2}}{(1-\alpha)}$
\because	$\alpha \lll<1 \quad \therefore(1-\alpha) \approx 1$
$\therefore \mathrm{~K}_{\mathrm{a}}=\mathrm{C} \alpha^{2}$	$\because \quad \alpha \lll<1 \quad \therefore \quad(1-\alpha) \approx 1$
	$\therefore \mathrm{~K}_{\mathrm{b}}=\mathrm{C} \alpha^{2}$

Where $\quad \mathrm{K}_{\mathrm{a}} \rightarrow$ Ionisation constant of weak acid
$\mathrm{K}_{\mathrm{b}} \rightarrow$ Ionisation constant of weak base

> (ii). $\left[\mathrm{H}^{+}\right]$(Concentration of $\left.\mathrm{H}^{+}\right)$
> $\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha \quad$........(1)
$\mathrm{K}_{\mathrm{a}}=\mathrm{C} \alpha^{2}$ or $\alpha=\sqrt{\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{C}}}$
from Eq. (1) and (2)
$\left[\mathrm{H}^{+}\right]=\mathrm{C} \times \frac{\sqrt{\mathrm{K}_{\mathrm{a}}}}{\sqrt{\mathrm{C}}}$
$\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \times \mathrm{C}}$
(iii). $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
put the value of $\left[\mathrm{H}^{+}\right]$
$p H=-\log \left(\sqrt{K_{a} \times C}\right)=-\log \left(K_{a} \times C\right)^{1 / 2}$
$\mathrm{pH}=-\frac{1}{2}\left[\log \mathrm{~K}_{\mathrm{a}}+\log \mathrm{C}\right]$
$\mathrm{pH}=-\frac{1}{2} \log \mathrm{~K}_{\mathrm{a}}-\frac{1}{2} \log \mathrm{C}$
$\mathrm{pH}=\frac{1}{2} \mathrm{pK}_{\mathrm{a}}-\frac{1}{2} \log \mathrm{C}$
In summary :

1. $\mathrm{K}_{\mathrm{a}}=\mathrm{C} \alpha^{2}$
2. $\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha=\sqrt{\mathrm{K}_{\mathrm{a}} \times \mathrm{C}}$
3. $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
or $\mathrm{pH}=\frac{1}{2} \mathrm{pK}_{\mathrm{a}}-\frac{1}{2} \log \mathrm{C}$
(ii). $\left[\mathrm{OH}^{-}\right]$(Concentration of OH^{-})
$\left[\mathrm{OH}^{-}\right]=\mathrm{C} \alpha$
$K_{b}=C \alpha^{2}$ or $\alpha=\sqrt{\frac{K_{b}}{C}}$.
from Eq. (1) and (2)
$\left[\mathrm{OH}^{-}\right]=\mathrm{C} \times \frac{\sqrt{\mathrm{K}_{\mathrm{b}}}}{\sqrt{\mathrm{C}}}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{b}} \times \mathrm{C}}$
(iii). $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
put the value of $\left[\mathrm{OH}^{-}\right]$
$\mathrm{pOH}=-\log \left(\sqrt{\mathrm{K}_{\mathrm{b}} \times \mathrm{C}}\right)=-\log \left(\mathrm{K}_{\mathrm{b}} \times \mathrm{C}\right)^{1 / 2}$
$\mathrm{pOH}=-\frac{1}{2}\left[\log K_{\mathrm{b}}+\log \mathrm{C}\right]$
$\mathrm{pOH}=-\frac{1}{2} \log _{\mathrm{b}}-\frac{1}{2} \log \mathrm{C}$
$\mathrm{pOH}=\frac{1}{2} \mathrm{pK}_{\mathrm{b}}-\frac{1}{2} \log \mathrm{C}$
In summary :
4. $\mathrm{K}_{\mathrm{b}}=\mathrm{C} \alpha^{2}$
5. $\left[\mathrm{OH}^{-}\right]=\mathrm{C} \alpha=\sqrt{\mathrm{K}_{\mathrm{b}} \times \mathrm{C}}$
6. $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

Or $\mathrm{pOH}=\frac{1}{2} \mathrm{pK}_{\mathrm{b}}-\frac{1}{2} \log \mathrm{C}$

Limitation of Ostwald Dilution Law :

(1) It is not applicable for strong electrolytes.
(2) It is not applicable for saturated solutions.

Factors affecting the Value of Degree of ionisation :

(1) Temperature \rightarrow On increasing temperature, ionization increases so α increases.
(2) Dilution $\rightarrow \alpha \propto \sqrt{V}$ so on dilution, α increases.
(3) Nature of electrolytes
(i) Strong electrolytes
$\alpha=100 \%$
(ii) Weak electrolytes
$\alpha<100 \%$
(4) Nature of solvent

If Dielectric constant μ of solvent increases then the value of α increases.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \rightarrow \mu=81 \\
& \mathrm{D}_{2} \mathrm{O} \rightarrow \mu=79 \\
& \mathrm{C}_{6} \mathrm{H}_{6} \rightarrow \mu=2.5 \\
& \mathrm{CCl}_{4} \rightarrow \mu=0
\end{aligned}
$$

BIODATA OF WATER

(a) Nature of water is neutral.
i.e. at $25^{\circ} \mathrm{C} \mathrm{pH}=7$ and $\mathrm{pOH}=7$

$$
\therefore \quad \mathrm{pH}=\mathrm{pOH}
$$

(b) Concentration of H^{+}and OH^{-}ions in 1 litre water

$$
\left[\mathrm{H}^{+}\right]=10^{-7} \mathrm{~mol} \mathrm{~L}^{-1} \quad \text { and }\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}
$$

(c) Number of H^{+}and OH^{-}ions in 1 litre water

Number of H^{+}ions $=10^{-7} \mathrm{~N}_{\mathrm{A}}$ and number of OH^{-}ions $=10^{-7} \mathrm{~N}_{\mathrm{A}}$
(d) Number of $\mathrm{H}_{2} \mathrm{O}$ moles in 1 litre water $1000 / 18=55.5$ moles
(e) Number of $\mathrm{H}_{2} \mathrm{O}$ molecules in 1 litre water $=55.5 \mathrm{~N}_{\mathrm{A}} \quad$ ($\mathrm{N}_{\mathrm{A}}=$ avogadro's number)
(f) Molar concentration of $\mathrm{H}_{2} \mathrm{O}$ molecules in water $=55.5 \mathrm{~mol} \mathrm{~L}^{-1}$
(g) In water (Number of $\mathrm{H}_{2} \mathrm{O}$ molecules: Number of H^{+}ions) $=55.5 \mathrm{~N}_{\mathrm{A}}: 10^{-7} \mathrm{~N}_{\mathrm{A}}=55.5 \times 10^{7}: 1$ i.e. one H^{+}ion is obtained from $55.5 \times 10^{7} \mathrm{H}_{2} \mathrm{O}$ molecules

So, degree of ionisation of water

$$
\begin{aligned}
& \alpha=\frac{x}{a}=\frac{1}{55.5 \times 10^{+7}}=18 \times 10^{-10}=1.8 \times 10^{-9} \\
& \alpha \%=1.8 \times 10^{-7} \%
\end{aligned}
$$

Hence, water is a very weak electrolyte.
K (Ionisation constant of water)

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& \mathrm{K}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
& \mathrm{K}=\frac{10^{-7} \times 10^{-7}}{55.5} \text { or } \mathrm{K}=1.8 \times 10^{-16}
\end{aligned}
$$

(h) Ionic product of water

Represented by [K_{w}]
$\mathrm{K} \times\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
At $25^{\circ} \mathrm{C}-\quad K_{W}=10^{-7} \times 10^{-7}=10^{-14}$
$\mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{K}_{\mathrm{w}} \Rightarrow \mathrm{K}_{\mathrm{w}}>\mathrm{K} \quad$ (always)
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
taking -log on both sides
$-\log \mathrm{K}_{\mathrm{w}}=-\log \left[\mathrm{H}^{+}\right]-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}$
Nature of water is neutral so
[$\mathrm{pH}=\mathrm{pOH}$]
$\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pH} \quad \mathrm{pK}_{w}=\mathrm{pOH}+\mathrm{pOH}$
$2 \mathrm{pH}=\mathrm{pK}_{\mathrm{w}} \quad 2 \mathrm{pOH}=\mathrm{pK}_{\mathrm{w}}$
$\mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{w}}}{2} \quad \mathrm{pOH}=\frac{\mathrm{pK}_{\mathrm{w}}}{2}$
$\mathrm{pH}=\mathrm{pOH}=\frac{\mathrm{pK}_{\mathrm{w}}}{2}$
At $25^{\circ} \mathrm{C}, \mathrm{K}_{w}=10^{-14}$ or $\mathrm{pK}_{w}=14$
$\mathrm{pH}+\mathrm{pOH}=14$ or $\mathrm{pH}=\mathrm{pOH}=7$
(i) Main Points :-
$\mathrm{pH}=\mathrm{pOH}=\frac{\mathrm{pK}_{\mathrm{w}}}{2}$
At $25^{\circ} \mathrm{C}, \mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14$
(j) Effect of temperature: -

$$
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

On increasing temperature rate of the forward reaction increases i.e. α increases or $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$increases or $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right.$] increases i.e. K_{w} increases means pH decreases or pOH decreases.

$$
\begin{aligned}
& \mathrm{T} \uparrow=\alpha \uparrow=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \uparrow=\mathrm{K}_{\mathrm{w}} \uparrow \Rightarrow \mathrm{pK} \mathrm{w}_{\mathrm{w}} \downarrow \\
& \text { At } 25^{\circ} \mathrm{C}, \mathrm{~K}_{\mathrm{w}}=10^{-14}
\end{aligned}
$$

$$
\text { At } 90^{\circ} \mathrm{C}, \mathrm{~K}_{\mathrm{w}}=\left(100 \times 10^{-14}\right)=10^{-12}
$$

Parameter	At $25^{\circ} \mathrm{C}$	At $90^{\circ} \mathrm{C}$
K_{w}	10^{-14}	10^{-12}
pK_{w}	14	12
$\mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{w}}}{2}=\mathrm{pOH}$	7	6
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$	10^{-7}	10^{-6}
$\mathrm{pH}+\mathrm{pOH}^{2}$	14	12

Important point:

On increasing temperature, both $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$increases equally so water remains neutral but neutral pH changes from 7 to 6 at $90^{\circ} \mathrm{C}$.

Mixing of ions:

(a) Common ion effect	(b) Odd ion effect
When a weak electrolyte having a	When a weak electrolyte having a
common ion, is mixed with strong	odd ion, is mixed with strong electrolyte then
electrolyte then the degree of ionisation	the degree of ionisation of weak
of weak electrolyte is decreased. This	electrolyte is increased. This effect is
effect is called common ion effect.	called odd ion effect.

Common ion:

On mixing $\mathrm{CH}_{3} \mathrm{COONa}$ with $\mathrm{CH}_{3} \mathrm{COOH}$ solution
Initially $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
On mixing

$\mathrm{CH}_{3} \mathrm{COO}^{-}$is common ion

Odd ion:
On mixing, NaOH with $\mathrm{CH}_{3} \mathrm{COOH}$ solution

Initially	$\mathrm{CH}_{3} \mathrm{COOH}$	$\rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
On mixing NaOH	$\rightleftharpoons \mathrm{Na}^{+}+$	
		$\rightleftharpoons \mathrm{OH}^{-}$
	$\mathrm{CH}_{3} \mathrm{COOH} \mathrm{COO}^{-}+$	
H^{+}		

- pH calculation of different type of solution
(a) Strong acid Solution :
(i) If concentration is greater than $10^{-6} \mathrm{M}$, in this case H^{+}ions coming from water can be neglected. So $\left[\mathrm{H}^{+}\right]=$normality of strong acid Solution
(ii) If concentration is less than $10^{-6} \mathrm{M}$, in this case H^{+}ions coming from water cannot be neglected. So $\left[\mathrm{H}^{+}\right]=$normality of strong acid $+\mathrm{H}^{+}$ions coming from water in presence of this strong acid
Ex-2 Calculate pH of $10^{-8} \mathrm{M} \mathrm{HCl}$ Solution.
$\begin{array}{llll}\text { Sol. } \mathrm{H}_{2} \mathrm{O} \rightleftharpoons & \mathrm{H}^{+} & + & \mathrm{OH}^{-} \\ 10^{-8} & + & x\end{array}$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$10^{-14}=x\left(x \times 10^{-8}\right)$
$\Rightarrow \mathrm{x}^{2}+\mathrm{x} \times 10^{-8}-10^{-14}=0$
$x=\frac{-10^{-8} \pm \sqrt{10^{-16}+4 \times 10^{-14}}}{2}=\frac{-10^{-8}+10^{-7} \sqrt{4+\frac{1}{100}}}{2}=\frac{(\sqrt{401}-1) 10^{-8}}{2}=0.95 \times 10^{-7}$
$\left[\mathrm{H}^{+}\right]=10.5 \times 10^{-8}=1.05 \times 10^{-7}$
$[\mathrm{pH}]=7-\log 1.05 \approx 6.98$
$10^{-9} \mathrm{M} \mathrm{HCl} \mathrm{pH} \approx 7$
$10^{-16} \mathrm{M} \mathrm{HCl} \mathrm{pH} \approx 7$
(b) Strong base Solution :

Calculate the $\left[\mathrm{OH}^{-}\right]$which will be equal to normality of the strong base solution and then use
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=10^{-14}$, to calculate $\left[\mathrm{H}^{+}\right]$.

Ex-3 Calculate pH of $10^{-7} \mathrm{M}$ of NaOH Solution

Sol. $\left[\mathrm{OH}^{-}\right]$from $\mathrm{NaOH}=10^{-7}$

[OH^{-}] from water $=x<10^{-7} \mathrm{M}$ (due to common ion effect)
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{H}^{+}$

- $\quad\left(x+10^{-7}\right) \quad x$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}=\mathrm{x}\left(\mathrm{x}+10^{-7}\right)$
$x^{2}+10^{-7} x-10^{-14}=0$
$\Rightarrow \quad x=\frac{\sqrt{5}-1}{2} \times 10^{-7}=0.618 \times 10^{-7} \quad(\sqrt{5}=2.236)$
$\left[\mathrm{OH}^{-}\right]=10^{-7}+0.618 \times 10^{-7}=1.618 \times 10^{-7}$
$\mathrm{pOH}=7-\log (1.618)=6.79$
$\mathrm{pH}=14-6.79=7.21$
(c) pH of mixture of two strong acids :

If V_{1} volume of a strong acid solution of normality N_{1} is mixed with V_{2} volume of another strong acid solution of normality N_{2}, then
Number of H^{+}ions from I-solution $=\mathrm{N}_{1} \mathrm{~V}_{1}$
Number of H^{+}ions from II-solution $=\mathrm{N}_{2} \mathrm{~V}_{2}$
If final normality is N and final volume is V , then

$$
N V=N_{1} V_{1}+N_{2} V_{2}
$$

[dissociation equilibrium of none of these acids will be disturbed as both are strong acid]

$$
\left[\mathrm{H}^{+}\right]=\mathrm{N}=\frac{\mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}
$$

(d) pH of mixture of two strong bases:

Similar to above calculation

$$
\left[\mathrm{OH}^{-}\right]=\mathrm{N}=\frac{\mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{\left[\mathrm{OH}^{-}\right]}
$$

Ex-4 Calculate pH of mixture of $\left(400 \mathrm{ml}, \frac{1}{200} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\right)+\left(400 \mathrm{ml}, \frac{1}{100} \mathrm{M} \mathrm{HCl}\right)+(200 \mathrm{ml}$ of water $)$
Sol. $\quad \mathrm{N}_{1} \mathrm{~V}_{1}=\frac{1}{100} \times \frac{400}{1000}=\frac{4}{1000}, \mathrm{~N}_{2} \mathrm{~V}_{2}=\frac{4}{1000}, \mathrm{H}^{+}$ions from water will be neglected

$$
\mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}=8 \times 10^{-3} \quad\left[\mathrm{H}^{+}\right]=\frac{8 \times 10^{-3}}{1}=8 \times 10^{-3}
$$

$\mathrm{pH}=3-\log 8=2.1$
(e) pH of mixture of a strong acid and a strong base :

- Acid Base neutralisation reaction will take place.

O The solution will be acidic or basic depending on which component has been taken in excess.
O If V_{1} volume of a strong acid solution of normality N_{1} is mixed with V_{2} volume of a strong base solution of normality N_{2}, then
Number of H^{+}ions from I-solution $=\mathrm{N}_{1} \mathrm{~V}_{1}$
Number of OH^{-}ions from II-solution $=\mathrm{N}_{2} \mathrm{~V}_{2}$

Ex-5 Calculate pH of mixture of $\left(400 \mathrm{ml}, \frac{1}{200} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}\right)+\left(400 \mathrm{ml}, \frac{1}{50} \mathrm{M} \mathrm{HCl}\right)+(200 \mathrm{ml}$ of Water $)$
Sol. $\left[\mathrm{H}^{+}\right]=\frac{400 \times \frac{1}{50}-400 \times \frac{1}{200} \times 2}{1000}=4 \times 10^{-3}$, so $\mathrm{pH}=3-2 \log 2=2.4$

Weak Acid, Weak Base and their pH, Polyprotic acid :

(f) pH of a weak acid (monoprotic) Solution:

- Weak acid does not dissociate 100% therefore we have to calculate the percentage dissociation using K_{a}, dissociation constant of the acid.
- We have to use Ostwald's Dilution law (as have been derived earlier)
 Take $\mathrm{K}_{\mathrm{a}}=2 \times 10^{-5}$.

Sol.

$$
\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha} \Rightarrow \alpha=\sqrt{\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{C}}}=\sqrt{\frac{2 \times 10^{-5}}{10^{-1}}}=\sqrt{2 \times 10^{-4}}(\alpha \ll 0.1)
$$

$$
\text { So, } \quad\left[\mathrm{H}^{+}\right]=10^{-1} \times \sqrt{2} \times 10^{-2} \Rightarrow \mathrm{pH}=3-\frac{1}{2} \log 2=2.85 \text { Ans. }
$$

(g) $\quad \mathrm{pH}$ of a mixture of weak acid(monoprotic) and a strong acid Solution:

- Weak acid and Strong acid both will contribute H^{+}ion.
- For the first approximation we can neglect the H^{+}ions coming from the weak acid Solution and calculate the pH of the Solution from the concentration of the strong acid only.
- To calculate exact pH , we have to take the effect of presence of strong acid on the dissociation equilibrium of the weak acid.
If $\quad[S A]=C_{1}$ and $[W A]=C_{2}$, then $\left[H^{+}\right]$from $S A=C_{1}$
the weak acid will dissociate as follows.

$$
\mathrm{C}_{2}(1-\alpha) \quad \mathrm{C}_{2} \alpha+\mathrm{C}_{1} \quad \mathrm{C}_{2} \alpha \quad \mathrm{~K}_{\mathrm{a}}=\frac{\left(\mathrm{C}_{2} \alpha+\mathrm{C}_{1}\right) \mathrm{C}_{2} \alpha}{\mathrm{C}_{2}(1-\alpha)} \quad(\alpha \lll 1)
$$

(The weak acids dissociation will be further suppressed because of presence of strong acid, common ion effect)

$$
\mathrm{K}_{\mathrm{a}}=\left(\mathrm{C}_{2} \alpha+\mathrm{C}_{1}\right) \alpha
$$

Total H^{+}ion concentration $=\mathrm{C}_{1}+\mathrm{C}_{2} \alpha$

- If the total $\left[\mathrm{H}^{+}\right]$from the acid is less than $10^{-6} \mathrm{M}$, then contribution from the water can be neglected at 250 C temp., if not then we have to take $\left[\mathrm{H}^{+}\right]$from the water also.
(h) pH of a Solution of a polyprotic weak acid:
- Diprotic acid is the one, which is capable of giving 2 protons per molecule in water.

Let us take a weak diprotic acid $\left(\mathrm{H}_{2} \mathrm{~A}\right)$ in water whose concentration is CM .
In an aqueous Solution, following equilbria exist.
If
$\alpha_{1}=$ degree of ionization of $\mathrm{H}_{2} A$ in presence of $\mathrm{HA}^{-} \quad \mathrm{K}_{\mathrm{a}_{1}}=$ first ionisation constant of $\mathrm{H}_{2} \mathrm{~A}$.
$\alpha_{2}=$ degree of ionisation of HA^{-}in presence of $\mathrm{H}_{2} \mathrm{~A}$.
$\mathrm{K}_{\mathrm{a}_{2}}=$ second ionisation constant of $\mathrm{H}_{2} \mathrm{~A}$.

I step

$\mathrm{H}_{2} \mathrm{~A}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{A}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
at eq. $c\left(1-\alpha_{1}\right)$

$$
c \alpha_{1}\left(1-\alpha_{2}\right) \quad\left(c \alpha_{1}+c \alpha_{1} \alpha_{2}\right)
$$

$$
\begin{align*}
& \text { at eq. } \mathrm{c} \alpha_{1}\left(1-\alpha_{2}\right) \quad \mathrm{c} \alpha_{1} \alpha_{2} \\
& {\left[\mathrm{~K}_{\text {eq }}\right]_{2}\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{2-}\right]}{\left[\mathrm{HA}^{-}\right]}=\mathrm{K}_{\mathrm{a}_{2}}} \\
& \mathrm{~K}_{\mathrm{a}_{2}}=\frac{\left(\mathrm{c} \alpha_{1}+\mathrm{c} \alpha_{1} \alpha_{2}\right)\left(\mathrm{c} \alpha_{1} \mathrm{c} \alpha_{2}\right)}{\mathrm{c} \alpha_{1}\left(1-\alpha_{2}\right)} \\
& =\frac{\left[\mathrm{c} \alpha_{1}\left(1+\alpha_{2}\right)\right] \alpha_{2}}{1-\alpha_{2}} \quad \ldots \ldots(\mathrm{ii}) \tag{ii}
\end{align*}
$$

$$
c \alpha_{1} \alpha_{2}\left(c \alpha_{1}+c \alpha_{1} \alpha_{2}\right)
$$

Knowing the values of $\mathrm{K}_{\mathrm{a}_{1}}, \mathrm{~K}_{\mathrm{a}_{2}}$ and c , the values of α_{1} and α_{2} can be calculated using equations (i) and (ii).
After getting the values of α_{1} and $\alpha_{2}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$can be calculated as.
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{T}}=\mathrm{c} \alpha_{1}+\mathrm{c} \alpha_{1} \alpha_{2}$

Finally, for calculating pH

- If the total $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<10^{-6} \mathrm{M}$, the contribution of $\mathrm{H}_{3} \mathrm{O}^{+}$from water should be added
- If the total $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>10^{-6} \mathrm{M}$, then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$contribution from water can be ignored.

Using this $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, pH of the Solution can be calculated.

Approximation

For diprotic acids, $\mathrm{K}_{\mathrm{a}_{2}} \ll \mathrm{~K}_{\mathrm{a}_{1}}$ and α_{2} would be even smaller than α_{1}.

$$
\therefore \quad 1-\alpha_{2} \approx 1 \text { and } 1+\alpha_{2} \approx 1
$$

Thus, equation (i) can be reduced to $\quad \mathrm{K}_{\mathrm{a}_{1}}=\frac{\mathrm{C} \alpha_{1} \times \alpha_{1}}{1-\alpha_{1}}$
This is an expression similar to the expression for a weak monoprotic acid.

- Hence, for a diprotic acid (or a polyprotic acid) the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$can be calculated from its first equilibrium constant expression alone provided. $\mathrm{K}_{\mathrm{a}_{2}} \ll \mathrm{~K}_{\mathrm{a}_{1}}$

Ex:7 Calculate $\mathrm{pH},\left[\mathrm{HS}^{-}\right], \mathrm{S}^{2-},\left[\mathrm{Cl}^{-}\right]$in a Solution which is $0.1 \mathrm{M} \mathrm{HCl} \& 0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ given that $\mathrm{Ka}_{1}\left(\mathrm{H}_{2} \mathrm{~S}\right)=$ $10^{-7}, \mathrm{Ka}_{2}\left(\mathrm{H}_{2} \mathrm{~S}\right)=10^{-14}$ also calculate $\alpha_{1} \& \alpha_{2}$

Sol. $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{~S}$
$0.1 \quad 0.1 \quad \mathrm{C}=0.1$
$\therefore \quad \mathrm{pH}=1$ (most of $\left[\mathrm{H}^{+}\right]$comes from HCl$)$

$$
\begin{array}{ll}
& \mathrm{H}_{2} \mathrm{~S} \\
\mathrm{C}_{1} & \\
& \mathrm{H}^{+}+\mathrm{SH}^{-} \\
\mathrm{C}_{1}-\mathrm{C}_{1} \alpha_{1} \quad & +0.1 \\
& \mathrm{C}_{1} \alpha_{1}, \mathrm{C}_{1} \alpha_{1} \\
\mathrm{Ka}_{1}= & \frac{\mathrm{C}_{1} \alpha_{1} \times 10^{-1}}{\mathrm{C}_{1}\left(1-\alpha_{1}\right)} \\
& \\
\alpha_{1}=\frac{10^{-7}}{10^{-1}}=10^{-6} \\
& \mathrm{HS}^{-} \quad \rightleftharpoons \\
& \mathrm{C}^{2-}+\mathrm{H}^{+} \\
& \mathrm{C}_{1}\left(1-\alpha_{2}\right) \quad \mathrm{C}_{1} \alpha_{1} \alpha_{2} \\
& 10^{-14}=0.1 \times \alpha_{2} \\
\Rightarrow \quad & \alpha_{2}=10^{-13} \\
& {\left[\mathrm{~S}_{2}^{2-}\right]=\mathrm{C} \alpha_{1} \alpha_{2}=10^{-1} \times 10^{-6} \times 10^{-13}=10^{-20} \mathrm{M}}
\end{array}
$$

Ex. 8 Calculate $\mathrm{pH} 10^{-1} \mathrm{M} \mathrm{HCl}$ in $10^{-3} \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left[\mathrm{K}_{\mathrm{a}}=2 \times 10^{-5}\right]$
Sol. $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
$\mathrm{C}(1-\alpha) \mathrm{C} \alpha \quad 10^{-1}+\mathrm{C} \alpha$
; $\mathrm{C} \quad$; $\quad 10^{-1}$
H^{+}ion can be treated completely from HCl due to less dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$ and its low conc.
$2 \times 10^{-5}=\frac{\mathrm{C} \alpha \times 10^{-1}}{\mathrm{C}}$
$\alpha=2 \times 10^{-4}$
$\left[\mathrm{H}^{+}\right]_{\mathrm{CH}_{3} \text { соOH }} \mathrm{C} \alpha=2 \times 10^{-7}$
(J) Mixture of a polyprotic weak Acid \& Strong Acid
(i) pH can be calculated by taking the concentration of strong acid only
(ii) For other calculations we should consider the dissociation equilibria of weak polyprotic acid as done in equation.

Ex. 9 At dissociation constant of heavy water is 4×10^{-15} at $35^{\circ} \mathrm{C}$ lts density is $1.04 \mathrm{~g} / \mathrm{ml}$ calculate its ionic product \& degree of dissociation.
Sol. $\quad \mathrm{kw}=\mathrm{kd}\left[\mathrm{D}_{2} \mathrm{O}\right]=\left(4 \times 10^{-15} \times \frac{1040}{20}\right) \quad \mathrm{d}=\sqrt{\frac{\mathrm{kw}}{\mathrm{c}}}=\sqrt{\frac{2.08 \times 10^{-13}}{5^{2}}}=12.64 \times 10^{-8}$
Ex. 10 Calculate ionic product of H 2 O at $50^{\circ} \mathrm{C}$
Sol. $\Delta \mathrm{H}=13.7 \times 10^{3} \mathrm{cal}$
$\log =\frac{\mathrm{k}_{2}}{10^{-14}}=\frac{13.7 \times 10^{3}}{2}\left(\frac{1}{290}-\frac{1}{323}\right)$
Ex. 11 The hydronium ion conc. in an aq. $\mathrm{H}_{2} \mathrm{Co}_{3}$ solution is $4 \times 10^{-4} \mathrm{~m}$ at $25^{\circ} \mathrm{COH}$ ion the sol is.
(1) 0
(2) 2.5×10^{-10}
(3) 2.5×10^{-3}
(4) $2.5 \times 10^{-11} \mathrm{~m}$

Sol. 4
Ex. 12 Select correct option from the following ?
(1) $p k_{w}$ increase with increase of temperature
(2) pk_{w} decrcase with increase of temperature
(3) $p k_{w}=14$ at all temperature
(4) $\mathrm{pk}_{\mathrm{w}}=\mathrm{pH}$ at all temperature

Sol 2

PRACTICE SECTION-01

Q. 1 Ionisation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.7×10^{-5} and concentration of H^{+}ions is 3.4×10^{-4}. Then initial concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ molecules is
(1) 3.4×10^{-4}
(2) 3.4×10^{-3}
(3) 6.8×10^{-3}
(4) 1.7×10^{-3}
Q. 2 At $25^{\circ} \mathrm{C}$, the dissociation constant of a base, BOH is 1.0×10^{-12}. The concentration of hydroxyl ions in 0.01 M aqueous solution of the base would be :
(1) $1.0 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$
(2) $1.0 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$
(3) $2.0 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$
(4) $1.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
Q. 3 Which of the following concentrations has the largest degree of dissociation for a weak acid?
(1) 1.0 M
(2) 0.5 M
(3) 0.10 M
(4) 0.01 M
Q. 4 Calculate the amount of acetic acid in one litre of its solution $\alpha=1 \%$ and $K_{1}=1.8 \times 10^{-5}$.
(1) 0.18 gm
(2) 10.8 gm
(3) 108 gm
(4) 18 gm
Q. 5 The K_{w} of $2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$changes from 10^{-14} at $25^{\circ} \mathrm{C}$ to 9.62×10^{-14} at $90^{\circ} \mathrm{C}$. Choose correct option.
(1) pH of $\mathrm{H}_{2} \mathrm{O}$ at $90^{\circ} \mathrm{C}$ is 6.51 and water become acidic
(2) pH of $\mathrm{H}_{2} \mathrm{O}$ at $90^{\circ} \mathrm{C}$ is 6.51 and water remains neutral
(3) pH and neutrality of water both remains unchanged
(4) pH of $\mathrm{H}_{2} \mathrm{O}$ at $90^{\circ} \mathrm{C}$ is 6.1 and water remains neutral
Q. 6 The K_{a} values of acetic acid, hypochlorous acid and formic acid are $1.74 \times 10^{-5}, 3.0 \times 10^{-8}$ and 1.8×10^{-4} respectively. Which of the following orders of pH of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions of these acids is correct?
(1) Acetic acid $>$ Hypochlorous acid $>$ Formic acid
(2) Hypochlorous acid $>$ Acetic acid $>$ Formic acid
(3) Formic acid $>$ Hypochlorous acid $>$ Acetic acid
(4) Formic acid > Acetic acid > Hypochlorous acid
Q. 7 How much water should be added to 10.0 g of acetic acid to give a hydrogen-ion concentration equal to $1.0 \times 10^{-3} \mathrm{M}$ (given $\mathrm{pK}_{\mathrm{a}}=4.74$)?
(1) 4 L
(2) 6 L
(3) 5 L
(4) 3 L

ANSWER KEY							
Que.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Ans.	3	2	4	2	2	2	4

SALTS, TYPES OF SALT AND CONJUGATE THEORY

(A) SALT:

Salts are regarded as compounds made up of positive and negative ions. The positive part comes from a base while negative part from an acid. Salts are ionic compounds.
i.e. A compound formed by the combination of acid and base is known as salt.

$$
\begin{aligned}
& \text { Acid }+ \text { Base } \rightarrow \text { Salt + Water } \\
& \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}(\text { Salt })+\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-\mathrm{ve}
\end{aligned}
$$

(B) TYPES OF SALT

(a) Normal/general salts: - The salts formed by the loss of all possible protons. (replaceable hydrogen ions as H^{+}) are called normal salts. Such a salt does not contain either a replaceable hydrogen ions or a hydroxyl $\left(\mathrm{OH}^{-}\right)$group.
Ex.: $\quad \mathrm{NaCl}, \mathrm{NaNO}_{3}, \mathrm{~K}_{2} \mathrm{SO}_{4}, \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}, \mathrm{Na}_{2} \mathrm{HPO}_{3}, \mathrm{NaH}_{2} \mathrm{PO}_{2}$ etc.
Types of general salts:
(i) Strong Acid Strong Base
(ii) Strong Acid Weak Base
(iii) Weak Acid Strong Base
(iv) Weak Acid Weak Base
(b) Acid salts :- Salt formed by incomplete neutralisation of poly basic acids are called acid salts. Such salts still contain one or more replaceable hydrogen ions (H^{+}).
Ex. : $\mathrm{NaHCO}_{3}, \mathrm{NaHSO}_{4}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$ etc.
(c) Basic salts :- Salts are formed by incomplete neutralisation of poly acidic base are called basic salts. Such salts still contain one or more hydroxyl ion group.
Ex : $\mathrm{Zn}(\mathrm{OH}) \mathrm{Cl}, \mathrm{Mg}(\mathrm{OH}) \mathrm{Cl}, \mathrm{Fe}(\mathrm{OH})_{2} \mathrm{Cl}, \mathrm{Bi}(\mathrm{OH})_{2} \mathrm{Cl}$ etc.
(d) Double salts :- The addition compounds formed by the combination of two simple salts are termed double salts. Such salts are stable in solid state only.
Ex. : $\mathrm{FeSO}_{4} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$,
$\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ etc.
(Ferrous ammonium sulphate)
(Potash alum)
(e) Complex salts:- These are formed by combination of simple salts or molecular compounds or complex ions are present in salt molecules. These are stable in solid state as well as in solutions.

(f) Mixed salts :- The salts which furnishes more than one cation or more than one anion when dissolved in water is called a mixed salt.

Ex.: (i)

(ii)

(iii)

(iv)

(C) CONJUGATE ACID-BASE PAIR: Conjugate acid-base pairs means difference between two species of only one H^{+} or OH^{-}ion.

$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons$	$\mathrm{CH}_{3} \mathrm{COO}^{-}+$	H^{+}
Weak acid	Conjugate strong base	
$\left(K_{a}=1.85 \times 10^{-5}\right)$	or acceptor ion	
$\mathrm{NH}_{4} \mathrm{OH} \quad \rightleftharpoons$	$\mathrm{NH}_{4}^{+}+$	OH^{-}
Weak base	Conjugate strong acid	
$\left(K_{b}=1.85 \times 10^{-5}\right)$	or acceptor ion	
$\mathrm{HCl} \quad \rightleftharpoons$	$\mathrm{H}^{+}+$	Cl^{-}
Strong acid		Conju
$\left(K_{\mathrm{a}} \sim \sim\right)$		Acce
$\mathrm{NaOH} \quad \rightleftharpoons$	$\mathrm{Na}^{+}+$	OH^{-}
Strong base	Conjugate weak	
$\left(K_{b} \sim \infty\right)$	(spectator ion)	

(D) RELATION BETWEEN CONJUGATE ACID-BASE PAIR :-

$$
\text { Example }-\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}
$$

Acid	conjugate base	
$\mathrm{NH}_{4} \mathrm{OH}$	\rightleftharpoons	NH_{4}^{+}

Base conjugate acid
$\mathrm{CH}_{3} \mathrm{COOH}$
acid conjugate base
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}
$$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]} \tag{i}
\end{equation*}
$$

In both the reactions $\mathrm{H}_{2} \mathrm{O}$ in excess quantity so active mass of $\mathrm{H}_{2} \mathrm{O}$ is one.
Now multiply the equation (i) and (ii)
$\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
we know $\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{W}}$ (lonic product of water)
$\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$
Taking -log on both sides
$\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=\mathrm{pK}_{\mathrm{w}}$
we know that for water at $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{w}}=10^{-14}$ or $\mathrm{pK} \mathrm{w}_{\mathrm{w}}=14$
So $K_{a} \times K_{b}=10^{-14}$
or $\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=14$
Note : These relation are applicable for only conjugate acid-base pairs.

HYDROLYSIS OF SALTS

Salt hydrolysis is defined as the process in which water reacts with salt to form acid and base. i.e. change in concentration of H^{+}and OH^{-}ions of water.

Water + Salt \rightleftharpoons Acid + Base
(A) Hydrolysis of strong acid and strong base [SA - SB] types of salt -

Ex. $\mathrm{NaCl}, \mathrm{BaCl}_{2}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{KClO}_{4}, \mathrm{BaSO}_{4}, \mathrm{NaNO}_{3}, \mathrm{KBr}, \mathrm{KCl}$ etc.
$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NaOH}+\mathrm{HCl}$
$\mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{OH}^{-}+\mathrm{H}^{+}+\mathrm{Cl}^{-}$
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$(It is not salt hydrolysis)
(i) Hydrolysis of salt of $[S A-S B]$ is not possible.
(ii) Aqueous solution of these type of salt is neutral in nature. $(\mathrm{pH}=\mathrm{pOH}=7)$
(iii) pH of the solution is 7 .
(iv) No effect on litmus paper.
(B) Hydrolysis of strong acid and weak base [SA - WB] types of salt -

Ex. $\mathrm{CaSO}_{4}, \mathrm{NH}_{4} \mathrm{Cl},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{ZnCl}_{2}, \mathrm{CuCl}_{2}, \mathrm{CaCl}_{2}, \mathrm{AgCl}, \mathrm{AgI}, \mathrm{AgNO} 3$ etc
$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}$

$$
\text { WB } \quad \text { SA }
$$

$\mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+}+\mathrm{Cl}^{-}$
$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+}$
(i) In this type of salt hydrolysis, cation reacts with $\mathrm{H}_{2} \mathrm{O}$ therefore called as cationic hydrolysis.
(ii) Solution is acidic in nature as $\left[\mathrm{H}^{+}\right]$is increased.
(iii) pH of the solution is less than 7 .
(iv) Solution turns blue litmus paper red.
$K_{h}=$ Hydrolysis constant
$K_{w}=$ lonic product of water
$K_{a}=$ Ionisation constant of acid
$K_{b}=$ Ionisation constant of base
$h=$ Degree of hydrolysis
$\mathrm{C}=$ Concentration of salt (concentration of ions)
(a) Relation between K_{h}, K_{w} and K_{b}
$\mathrm{B}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BOH}+\mathrm{H}^{+}$
$\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+}$
Hydrolysis constant [K_{h}]
$\mathrm{K}_{\mathrm{h}}=\frac{\left[\mathrm{NH}_{4} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}$
For weak Base $\mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]}$

For water $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \tag{3}
\end{equation*}
$$

Now mutiplying Eq. (1) and (2) = Eq. (3)

$$
\frac{\left[\mathrm{NH}_{4} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \times \frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]}=\quad\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

i.e. $\quad K_{h} \times K_{b}=K_{w}$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}}} \tag{4}
\end{equation*}
$$

(b) Degree of hydrolysis - Represented by h

	$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+}$		
Initial concentration of salt	C	0	0
	$\mathrm{C}-\mathrm{Ch}$	Ch	Ch

$$
\mathrm{K}_{\mathrm{h}}=\frac{\left[\mathrm{NH}_{4} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\frac{\mathrm{Ch} \times \mathrm{Ch}}{\mathrm{C}-\mathrm{Ch}}=\frac{\mathrm{C}^{2} \mathrm{~h}^{2}}{\mathrm{C}(1-\mathrm{h})}=\frac{\mathrm{Ch}^{2}}{(1-\mathrm{h})}
$$

Since

$$
h \lll<1 \quad \text { then } \quad(1-h) \approx 1
$$

$$
\begin{equation*}
\therefore \quad \mathrm{K}_{\mathrm{h}}=\mathrm{Ch}^{2} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
h^{2}=\frac{K_{h}}{C} \quad \Rightarrow h=\sqrt{\frac{K_{h}}{C}} \tag{6}
\end{equation*}
$$

$$
\therefore \quad \mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}}} \quad \Rightarrow \mathrm{~h}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}}}} \mathrm{C}
$$

$$
\begin{equation*}
\mathrm{h}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}} \times \mathrm{C}}} \tag{7}
\end{equation*}
$$

(c) pH of the solution: $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

$$
\begin{equation*}
\left[\mathrm{H}^{+}\right]=\mathrm{Ch}=\mathrm{C} \sqrt{\frac{\mathrm{~K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}} \times \mathrm{C}}} \quad \Rightarrow \quad\left[\mathrm{H}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \times \mathrm{C}}{\mathrm{~K}_{\mathrm{b}}}} \tag{8}
\end{equation*}
$$

taking - log on both sides

$$
\begin{align*}
& -\log \left[\mathrm{H}^{+}\right]=-\log \sqrt{\frac{\mathrm{K}_{\mathrm{w}} \times \mathrm{C}}{\mathrm{~K}_{\mathrm{b}}}} \Rightarrow \mathrm{pH}=-\log \left(\frac{\mathrm{K}_{\mathrm{w}} \times \mathrm{C}}{\mathrm{~K}_{\mathrm{b}}}\right)^{1 / 2} \\
& \mathrm{pH}=-\frac{1}{2}\left[\log \mathrm{~K}_{\mathrm{w}}+\log \mathrm{C}-\log \mathrm{K}_{\mathrm{b}}\right] \\
& \mathrm{pH}=-\frac{1}{2} \log \mathrm{~K}_{\mathrm{w}}-\frac{1}{2} \log \mathrm{C}-\frac{1}{2}\left(-\log \mathrm{K}_{\mathrm{b}}\right) \\
& \mathrm{pH}=\frac{1}{2} \mathrm{pK}_{\mathrm{w}}-\frac{1}{2} \log \mathrm{C}-\frac{1}{2} \mathrm{pK}_{\mathrm{b}} \\
& \mathrm{pH}=7-\frac{1}{2} \mathrm{pK}_{\mathrm{b}}-\frac{1}{2} \log \mathrm{C} \tag{9}
\end{align*}
$$

(C) Hydrolysis of weak acid and strong base [WA - SB] types of salt -

Ex. $\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{HCOONa}, \mathrm{KCN}, \mathrm{NaCN}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{BaCO}_{3}, \mathrm{~K}_{3} \mathrm{PO}_{4}$ etc.

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \\
& \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}
\end{aligned}
$$

(i) In this type of salt hydrolysis, anion reacts with water therefore called as anionic hydrolysis.
(ii) Solution is basic in nature as $\left[\mathrm{OH}^{-}\right]$increases.
(iii) pH of the solution is greater than 7 .
(iv) Solution turns red litmus paper blue.
(a) Relation between K_{h}, K_{w} and K_{a}

$$
\begin{gather*}
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \\
\mathrm{K}_{\mathrm{h}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]} \tag{1}
\end{gather*}
$$

For weak acid
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \tag{2}
\end{equation*}
$$

For water

$$
\begin{align*}
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \tag{3}
\end{align*}
$$

Now multiply eq. (1) \times eq. (2) $=$ eq. (3)

$$
\begin{align*}
& \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]} \times \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& \mathrm{K}_{\mathrm{h}} \times \mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{W}} \\
& \mathrm{~K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}} \tag{4}
\end{align*}
$$

(b) Degree of hydrolysis (h):

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}
$$

Initial concentration of salt

C

0
0
$\mathrm{C}-\mathrm{Ch}$
Ch
Ch

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{h}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}=\frac{\mathrm{Ch} \times \mathrm{Ch}}{\mathrm{C}-\mathrm{Ch}}=\frac{\mathrm{C}^{2} \mathrm{~h}^{2}}{\mathrm{C}(1-\mathrm{h})} \\
& \mathrm{K}_{\mathrm{h}}=\frac{\mathrm{Ch}^{2}}{(1-\mathrm{h})}
\end{aligned}
$$

Since $h \lll<1 \quad$ then $\quad(1-h) \approx 1$

$$
\begin{equation*}
\therefore \quad \mathrm{K}_{\mathrm{h}}=\mathrm{Ch}^{2} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{h}^{2}=\frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{C}} \text { or } \mathrm{h}=\sqrt{\frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{C}}} \tag{6}\\
& \mathrm{~h}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}} \times \mathrm{C}}} \tag{7}
\end{align*}
$$

(c) pH of the solution

$$
\begin{align*}
& {\left[\mathrm{OH}^{-}\right]=\mathrm{Ch} } \\
& {\left[\mathrm{OH}^{-}\right]=\mathrm{C} \sqrt{\frac{\mathrm{~K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}} \times \mathrm{C}}} \times \text { or } \quad\left[\mathrm{OH}^{-}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \times \mathrm{C}}{\mathrm{~K}_{\mathrm{a}}}} } \\
\because \quad & \mathrm{~K}_{\mathrm{w}}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right] \\
\therefore \quad & {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{\mathrm{K}_{\mathrm{w}}}{\sqrt{\frac{\mathrm{~K}_{\mathrm{w}} \times \mathrm{C}}{\mathrm{~K}_{\mathrm{a}}}}} } \\
& {\left[\mathrm{H}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \times \mathrm{K}_{\mathrm{a}}}{\mathrm{C}}} }
\end{align*}
$$

taking - log on both sides

$$
\begin{align*}
& -\log \left[\mathrm{H}^{+}\right]=-\log \sqrt{\frac{\mathrm{K}_{\mathrm{w}} \times \mathrm{K}_{\mathrm{a}}}{\mathrm{C}}} \\
& \mathrm{pH}=-\log \left(\frac{\mathrm{K}_{\mathrm{w}} \times \mathrm{K}_{\mathrm{a}}}{\mathrm{C}}\right)^{1 / 2} \\
& \mathrm{pH}=-\frac{1}{2}\left[\log \mathrm{~K}_{\mathrm{w}}+\log \mathrm{K}_{\mathrm{a}}-\log \mathrm{C}\right] \\
& \mathrm{pH}=-\frac{1}{2} \log \mathrm{~K}_{\mathrm{w}}-\frac{1}{2} \log \mathrm{~K}_{\mathrm{a}}+\frac{1}{2} \log \mathrm{C} \\
& \mathrm{pH}=\frac{1}{2} \mathrm{pK} \mathrm{w}^{+} \frac{1}{2} \mathrm{pKa}+\frac{1}{2} \log \mathrm{C} \\
& \mathrm{pH}=7+\frac{1}{2} \mathrm{pKa}+\frac{1}{2} \log \mathrm{C} \tag{9}
\end{align*}
$$

(D) Hydrolysis of weak acid and weak base (WA - WB) type of SALT:

Ex. $\mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{AgCN}, \mathrm{NH}_{4} \mathrm{CN}, \mathrm{CaCO}_{3},\left[\mathrm{NH}_{4}\right]_{2} \mathrm{CO}_{3}, \mathrm{ZnHPO}_{3}$ etc.
$\mathrm{CH}_{3} \mathrm{COONH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH}$
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH}$
Solution is almost neutral but it may be acidic or basic depending upon the nature of acid and base and pH of the solution is near to 7 .
(a) Relation between K_{h}, K_{w}, K_{a} and K_{b}
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH}$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{h}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{NH}_{4} \mathrm{OH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{NH}_{4}^{+}\right]} \tag{1}
\end{equation*}
$$

For weak base

$$
\begin{align*}
& \mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
& \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]} \tag{2}
\end{align*}
$$

For weak acid

$$
\begin{align*}
& \mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \tag{3}
\end{align*}
$$

For water

$$
\begin{align*}
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \tag{4}
\end{align*}
$$

Multipy Eq. (1) \times Eq. (2) \times Eq. (3) $=$ Eq. (4)

$$
\begin{align*}
& \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{NH}_{4} \mathrm{OH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{NH}_{4}^{+}\right]} \times \frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]} \times \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& \mathrm{K}_{\mathrm{h}} \times \mathrm{K}_{\mathrm{b}} \times \mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}} \\
& \mathrm{~K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}} \tag{5}
\end{align*}
$$

(b) Degree of hydrolysis (h) -

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH}
$$

Initial concentration of salt C

C	0	0
$\mathrm{C}-\mathrm{Ch}$	Ch	Ch

$$
\mathrm{K}_{\mathrm{h}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{NH}_{4} \mathrm{OH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{NH}_{4}^{+}\right]}=\frac{\mathrm{Ch} \times \mathrm{Ch}}{(\mathrm{C}-\mathrm{Ch})(\mathrm{C}-\mathrm{Ch})}=\frac{\mathrm{C}^{2} \mathrm{~h}^{2}}{\mathrm{C}(1-\mathrm{h}) \times \mathrm{C}(1-\mathrm{h})}
$$

Since $h \lll<1$ then $(1-h) \approx 1$
$\therefore \quad \mathrm{K}_{\mathrm{h}}=\mathrm{h}^{2}$
or $h^{2}=\frac{K_{w}}{K_{a} \times K_{b}}$ or $h=\sqrt{\frac{K_{w}}{K_{a} \times K_{b}}}$
(c) pH of the solution
from equation (3)

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\
& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}=\frac{\mathrm{K}_{\mathrm{a}} \times \mathrm{Ch}}{\mathrm{C}-\mathrm{Ch}}=\frac{\mathrm{K}_{\mathrm{a}} \times \mathrm{h}}{1-\mathrm{h}}}
\end{aligned}
$$

Since $h \lll<1$ then $(1-h) \approx 1$
$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times \mathrm{h}$ [Now put the value of h from eq. (5)]
$=K_{a} \times \sqrt{\frac{K_{w}}{K_{a} \times K_{b}}}$

$$
\begin{equation*}
\left[\mathrm{H}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \times \mathrm{K}_{\mathrm{a}}}{\mathrm{~K}_{\mathrm{b}}}} \tag{8}
\end{equation*}
$$

taking $-\log$ on both sides $-\log \left[\mathrm{H}^{+}\right]=-\log \left(\frac{\mathrm{K}_{\mathrm{w}} \times \mathrm{K}_{\mathrm{a}}}{\mathrm{K}_{\mathrm{b}}}\right)^{1 / 2}$

$$
\begin{align*}
& \mathrm{pH}=-\frac{1}{2}\left[\log \left(\mathrm{~K}_{\mathrm{w}} \times \mathrm{K}_{\mathrm{a}}\right)-\log \mathrm{K}_{\mathrm{b}}\right] \\
& \mathrm{pH}=-\frac{1}{2}\left[\log \mathrm{~K}_{\mathrm{w}}+\log \mathrm{K}_{\mathrm{a}}-\log \mathrm{K}_{\mathrm{b}}\right] \\
& \mathrm{pH}=-\frac{1}{2}\left[\log \mathrm{~K}_{\mathrm{w}}\right]-\frac{1}{2}\left[\log \mathrm{~K}_{\mathrm{a}}\right]-\frac{1}{2}\left[-\log \mathrm{K}_{\mathrm{b}}\right] \\
& \mathrm{pH}=+\frac{1}{2} \mathrm{pK}_{\mathrm{w}}+\frac{1}{2} \mathrm{pKa}-\frac{1}{2} \mathrm{pK}_{\mathrm{b}} \\
& \mathrm{pH}=7+\frac{1}{2} \mathrm{pK}_{\mathrm{a}}-\frac{1}{2} \mathrm{pK}_{\mathrm{b}} \tag{9}
\end{align*}
$$

Note: Degree of hydrolysis of weak acid and weak base [WA - WB] type salt does not depend on the concentration of salt.
For WA - WB types of salt :

Terms	$\mathbf{K}_{\mathrm{a}}>\mathbf{K}_{\mathrm{b}}$	$\mathbf{K}_{\mathrm{b}}>\mathbf{K}_{\mathrm{a}}$	$\mathbf{K}_{\mathrm{a}}=\mathbf{K}_{\mathrm{b}}$	
1.	Hydrolysis	Cationic-anionic	Anionic-cationic	Neutral hydrolysis
2.	Nature	Acidic	Basic	Neutral
3.	pH	$\mathrm{pH}<7$	$\mathrm{pH}>7$	$\mathrm{pH}=7$

Summary :

Type of salts	$\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\text { weak }} \text { At } 25^{\circ} \mathrm{C}$	$\mathrm{h}=\sqrt{\frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{C}}}$	$\left[\mathrm{H}^{+}\right]$	pH
SA SB	N.A.	N.A.	10^{-7}	7
WA SB	$\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}}$	$h=\sqrt{\frac{K_{w}}{K_{a} \times C}}$	$\sqrt{\frac{K_{w} \times K_{a}}{C}}$	$7+\frac{1}{2} p K a+\frac{1}{2} \log C$
SA WB	$\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}}}$	$h=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}} \times \mathrm{C}}}$	$\sqrt{\frac{K_{w} \times C}{K_{b}}}$	$7-\frac{1}{2} \mathrm{pK}_{\mathrm{b}}-\frac{1}{2} \log \mathrm{C}$
WA WB	$\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}}$	$h=\sqrt{\frac{K_{w}}{K_{a} \times K_{b}}}$	$\sqrt{\frac{K_{w} \times K_{a}}{K_{b}}}$	$7+\frac{1}{2} \mathrm{pKa}-\frac{1}{2} \mathrm{pK}_{\mathrm{b}}$

If acid base are polybasic/polyacidic, then some more cases could arise.
(i) Solution containing polyvalent anions (or cations) or weak polyprotic acids (or bases)
(ii) The hydrolysis of these species with fake place in steps (just like dissociation of weak polyprotic acid)
(iii) Out of different steps, generally first step hydrolysis dominates mainly because of two reason.
(a) The hydrolysis constant of second \& farther steps in generally negligible in comparison to first step hydrolysis constant
(b) The second \& further step hydrolysis will be suppressed in presence of ions produced due to first step hydrolysis (common ion effect)
For polyprotic acids like $\left(\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$
We already know that the dissociation always takeplace in steps eg. $\mathrm{H}_{3} \mathrm{PO}_{4}$

$$
\begin{array}{lr}
\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}- & \mathrm{Ka}_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]} \ldots . .(1) \\
\mathrm{H}_{2} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HPO}_{4}{ }^{2-} & \mathrm{Ka}_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}\right]} \ldots . .(2) \\
\mathrm{HPO}_{4}{ }^{2-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HPO}_{4}{ }^{3-} & \mathrm{Ka}_{3}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HPO}_{4}^{3-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]}
\end{array}
$$

For all acid we always have $K a_{1} \gg K a_{2} \gg K a_{3}$
$\mathrm{HS}^{-} \rightleftharpoons \mathrm{S}^{2-}+\mathrm{H}^{+}$
$\mathrm{C}_{1} \alpha_{1}\left(1-\alpha_{2}\right) \quad \mathrm{C}_{1} \alpha_{1} \alpha_{2} \approx 0.1$
$10^{-14}=\frac{\mathrm{C}_{1} \alpha_{1} \alpha_{1} \times 0.1}{\mathrm{C}_{1} \alpha_{1}\left(1-\alpha_{2}\right)}$
Degree of dissociation of $\mathrm{HS}^{-}=\alpha_{2}=10^{-13}$
$\left[S^{2-}\right]=C_{1} \alpha_{2} \alpha_{2}=10^{-1} \times 10^{-6} \times 10^{-13}=10^{-20} \mathrm{M}$
$\left[\mathrm{HS}^{-}\right] \approx \mathrm{C}_{1} \alpha_{1}=10^{-1} \times 10^{-6}=10^{-7} \mathrm{M}$
H^{+}ion can be calculate from $1^{\text {st }}$ step only because $\left(\mathrm{H}^{+}\right)$from $2^{\text {nd }} \& 3^{\text {rd }}$ step can be neglected as
(a) $K a_{1} \gg k a_{2} \gg \mathrm{Ka}_{3}$
(b) $\left[\mathrm{H}^{+}\right]$from $1^{\text {st }}$ dissociation will suppress the dissociation oof $2^{\text {nd }} \& 3^{\text {rd }}$ step

Now from the hydrolysis of polyvalent ions (from salt like $\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{ZnSO}_{4}, \mathrm{FeCl}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ or lons like $\mathrm{PO}_{4}{ }^{3-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{Zn}^{+2}, \mathrm{fe}^{+3}$ etc)
Derivation

$$
\begin{array}{llll}
\mathrm{PO}_{4}^{3-}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons & \mathrm{HPO}_{4}^{2-} & + \\
\mathrm{t}=0 \quad \mathrm{C} & 0 & & 0 \tag{0}\\
\mathrm{t}=\mathrm{eq} \mathrm{C} & \mathrm{C}(1-\mathrm{h}) & \mathrm{Ch} & \mathrm{Ch}
\end{array}
$$

$$
\begin{equation*}
\mathrm{Kh}_{1}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{HPO}_{4}^{2-}\right]}{\mathrm{PO}_{4}^{3-}} \tag{4}
\end{equation*}
$$

$$
\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \quad \rightleftharpoons \quad \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{2-}+\mathrm{OH}^{-}
$$

$$
\begin{equation*}
\mathrm{Kh}_{2}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{HPO}_{4}^{-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]} \tag{5}
\end{equation*}
$$

$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \quad \rightleftharpoons \quad \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{OH}^{-}$

$$
\begin{equation*}
\mathrm{Kh}_{3}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]} \tag{6}
\end{equation*}
$$

$\mathrm{H}_{2} \mathrm{O} \quad \rightleftharpoons \quad \mathrm{H}^{+}+\mathrm{OH}^{-}$

$$
\begin{equation*}
\mathrm{Kw}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \tag{7}
\end{equation*}
$$

From above equations, we get
$\mathrm{Ka}_{1} \times \mathrm{Kh}_{3}=\mathrm{Iw} ; \quad \mathrm{Ka}_{2} \times \mathrm{Kh}_{2}=\mathrm{kw} ; \quad \mathrm{Ka}_{3} \times \mathrm{Kh}_{1}=\mathrm{Kw}$
Numerically ${K h_{1}}^{\prime} \gg \mathrm{Kh}_{2} \gg \mathrm{Kh}_{3}$
Generally, P^{H} is calculated only using the first step hydrolysis
$\mathrm{Kh}_{1}=\frac{\mathrm{Ch}-\mathrm{Ch}}{\mathrm{C}(1-\mathrm{h})}=\frac{\mathrm{Ch}^{2}}{1-\mathrm{h}}$
$1-h \approx 1$
$\mathrm{Kh}_{1}=\mathrm{Ch}_{2} \& \mathrm{~h}=\sqrt{\frac{\mathrm{Kh}_{1}}{\mathrm{C}}}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{Ch}=\sqrt{\mathrm{Kh}_{1}} \times \mathrm{C}$
$\left[\mathrm{H}^{+}\right]=\frac{\mathrm{Kw}}{\left[\mathrm{OH}^{-}\right]}=\mathrm{Kw} \sqrt{\frac{\mathrm{Ka}_{3}}{\mathrm{Kw} \times \mathrm{C}}}=\sqrt{\frac{\mathrm{Kw} \times \mathrm{Ka}_{3}}{\mathrm{C}}}$
So, $\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{w}+\mathrm{pKa}_{3}+\log \mathrm{c}\right]$
If $h \geq 0.1$ we should solve quadratic equation
Solution containg amphiprotic anion (or cation)
Anion of $\mathrm{NaHCO}_{3}, \mathrm{NaHS}$ etc can undergo ionization to from $\mathrm{H}^{+} \&$ can also undergo hydrolysis to form OH^{-}
(1) $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\text { ionisation }}{\rightleftharpoons} \mathrm{Co}_{3}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{Ka}_{2}$
(2) $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\text { hydrolysis }}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} ; \frac{\mathrm{Kw}}{\mathrm{Ka}}$

Taking the assumption :- Degree of ionization $(\alpha)=$ Degree of hydrolysis (h) or $\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
Calculation of pH can be done by relation :-
$\mathrm{pH}\left(\mathrm{HCO}_{3}^{-}\right)=\left(\frac{\mathrm{pKa}_{1}+\mathrm{pKa}_{2}}{2}\right)=$ Average of PKa values of parent acid involved in ionization $\&$ hydrolysis reaction
Similarly for $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$\& $\mathrm{HPO}_{4}{ }^{2-}$ amphiprotic anions

$$
\begin{aligned}
& \mathrm{pH}\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right)=\left(\frac{\mathrm{pKa}_{1}+\mathrm{pKa}_{2}}{2}\right) \text { and } \\
& \mathrm{pH}\left(\mathrm{HPO}_{4}{ }^{2-}\right)=\left(\frac{\mathrm{pKa}_{2}+\mathrm{pKa}_{3}}{2}\right)
\end{aligned}
$$

Where $K a_{1}, \mathrm{Ka}_{2} \& \mathrm{Ka}_{3}$ are dissociation constant of $\mathrm{H}_{3} \mathrm{PO}_{4}$.
Ex. 13 How many grams of $\mathrm{NH}_{4} \mathrm{Cl}$ should be dissolved per litre of solution to have a pH of 5.13 ?
Sol. $\mathrm{NH}_{4} \mathrm{Cl}$ is salt of $\mathrm{SA}+\mathrm{WB}$

$$
\begin{aligned}
& \mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}-\log \mathrm{c}-\mathrm{pK}_{\mathrm{b}}\right] \\
& 10.26=14-\log \mathrm{C}-4.74 \\
& \mathrm{C}=10^{-1} \mathrm{M} \\
& {\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=10^{-1} \mathrm{M}} \\
& \mathrm{~W}_{\mathrm{NH} 4 \mathrm{Cl}}=10^{-1} \times 53.5 \mathrm{~g} \mathrm{~L}^{-1}=5.35 \mathrm{~g} \mathrm{~L}^{-1}
\end{aligned}
$$

Ex. 14 Calculate the pH to degree of hydrolysis of 0.01 M solution of NaCN , Ka for HCN is 6.2×10^{-12}
Sol. $\quad \mathrm{NaCN}=$ Salt of $\mathrm{SB}+\mathrm{w} \cdot \mathrm{A}$

$$
\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCN}+\mathrm{OH}^{-}
$$

$\mathrm{k}_{\mathrm{h}}=\frac{[\mathrm{HCN}][\mathrm{OH}]}{\left[\mathrm{CN}^{-}\right]}=\frac{\mathrm{kw}}{\mathrm{Ka}}=\frac{10^{-14}}{6.2 \times 10^{-12}}$
Let x mole of salt undergo hydrolysis
$\left[\mathrm{CN}^{-}\right]=0.01-x \approx 0.01$
[HCN$]=x$
$\left[\mathrm{OH}^{-}\right]=x$
$\mathrm{k}_{\mathrm{h}}=\frac{\mathrm{x} \cdot \mathrm{x}}{0.01}=1.6 \times 10^{-3}$
$x^{2}=1.6 \times 10^{-5} \Rightarrow x=4 \times 10^{-3}$
$\left[\mathrm{OH}^{-}\right]=x=4 \times 10^{-3}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{kw}}{\left[\mathrm{OH}^{-}\right]}=\frac{10^{-14}}{4 \times 10^{-3}}=0.25 \times 10^{-11}$
$\mathrm{pH}=-\log \left(0.25 \times 10^{-11}\right)=11.602$
Degree of hydrolysis $=\frac{x}{0.01}=\frac{4 \times 10^{-3}}{0.01}=4 \times 10^{-1}$

PRACTICE SECTION-02

Q. 1 Given, $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_{\mathrm{a}}}{\rightleftharpoons} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$

$$
\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{~K}_{\mathrm{b}}}{\rightleftharpoons} \mathrm{HF}+\mathrm{OH}^{-}
$$

Which relation is correct?
(1) $K_{b}=K_{w}$
(2) $K_{b}=\frac{1}{K_{w}}$
(3) $K_{a} \times K_{b}=K_{w}$
(4) $\frac{K_{a}}{K_{b}}=K_{w}$
Q. 2 The correct statements are:
(1) $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid
(2) $\mathrm{NH}_{4} \mathrm{Cl}$ gives an alkaline solution in water
(3) $\mathrm{CH}_{3} \mathrm{COONa}$ gives an acidic solution in water
(4) $\mathrm{Na}_{2} \mathrm{SO}_{4}$ gives basic solution in water
Q. 3 Calculate pH of 0.10 M KCN solution at $25^{\circ} \mathrm{C}$. For $\mathrm{HCN}, \mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}$.
(1) 3.9
(2) 11.1
(3) 7
(4) None
Q.4 Calculate the pH of 0.10 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The dissociation constant $\left(\mathrm{K}_{\mathrm{b}}\right)$ of NH_{3} is 1.6×10^{-5}.
(1) 5.1
(2) 8.9
(3) 7
(4) 3
Q. 5 A weak acid $\mathrm{HA}\left(\mathrm{k}_{\mathrm{a}}=10^{-5}\right)$ combined with strong base to produce salt AB . Find out the equilibrium constant for this salt formation.
(1) 10^{-9}
(2) 10^{9}
(3) 10^{-5}
(4) 10^{5}
Q.6 The pKa of acetic acid and pK_{b} of ammonium hydroxide are 4.76 and 4.75 respectively. Calculate the hydrolysis constant of ammonium acetate at 298 K
(1) 1.25×10^{-5}
(2) 3.25×10^{-5}
(3) 6×10^{-4}
(4) 2×10^{-4}
Q. 7 Which of the following salt represent maximum anionic water hydrolysis
(1) kCl
(2) $\mathrm{CH}_{3} \mathrm{COONa}$
(3) HCOONa
(4) PhONa

ANSWER KEY							
Que.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Ans.	3	1	2	1	2	2	4

SOLUBILITY AND SOLUBILITY PRODUCT (Ksp)

(A) SOLUBILITY
(a) Definition
(i) At constant temperature the maximum number of moles of solute which can be dissolved in a solvent to obtain 1 litre of solution (i.e. saturated solution) is called solubility.

$$
S(M)=\frac{\text { Number of moles of solute }}{\text { Volume of solution (L) }} \quad S=\frac{x}{M_{w} \times V_{L}} \quad \mathrm{~mol} \mathrm{~L}^{-1}
$$

(ii) The maximum weight of solute which can be dissolved in a given amount of solvent is known as solubility.
(b) Important points :-

Solubility does not depend on amount of substances and volume of solution where as depends on the following -
(i) Temperature
(ii) Presence of common ion
(iii) Nature of solvent
(Molecular wt. of $\mathrm{AgCl}=143.5$)
(Molecular wt. of $\mathrm{BaSO}_{4}=233$)

- Solubility can be expressed in terms of molarity.
(B) SOLUBILITY PRODUCT(Ksp):
(a) At constant temperature product of concentrations of ions in a saturated solution of substance is called solubility product of that substance. (Saturated solution is that solution in which further dissolution of even a small amount of salt is not possible).
Ex. (i) Let solubility of $\mathrm{AgCl} \quad \mathrm{AgCl} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$

is $\mathrm{S} \mathrm{mol} \mathrm{L}^{-1}$	a	0	0

After saturation $\quad a-S \quad S \quad S$
According to L.O.M.A.
Solubility product at saturation in terms of concentration of ions $\mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$
Solubility product in terms of solubility $\mathrm{K}_{\mathrm{sp}}=(\mathrm{S})(\mathrm{S})$

$$
\mathrm{K}_{\mathrm{sp}}=\mathrm{S}^{2}
$$

Ex. (ii) Ksp for CaCl_{2}

$$
\mathrm{CaCl}_{2} \rightleftharpoons \mathrm{Ca}^{+2}+2 \mathrm{Cl}^{-}
$$

Initially
Let solubility of CaCl_{2}

a	0	0
$a-S$	S	$2 S$

is $\mathrm{S} \mathrm{mol} \mathrm{L}^{-1}$
Solubility product in terms of concentration of ions $\mathrm{Ksp}=\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{Cl}^{-}\right]^{2}$
In terms of solubility $\quad \mathrm{K}_{\mathrm{sp}}=(\mathrm{S})(2 \mathrm{~S})^{2}$

$$
\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^{3}
$$

Ex. (iii) Ksp for AlCl_{3}

Initially	a	0	0
Let solubility of AlCl_{3}	$a-S$	S	$3 S$

is $\mathrm{S} \mathrm{mol} \mathrm{L} \mathrm{L}^{-1}$
Solubility product in terms of concentration of ions

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Al}^{+3}\right]\left[\mathrm{Cl}^{-}\right]^{3}
$$

In terms of solubility $\quad \mathrm{K}_{\mathrm{sp}}=(\mathrm{S})(3 \mathrm{~S})^{3}$
$\mathrm{K}_{\mathrm{sp}}=27 \mathrm{~S}^{4}$
(b) General form $\quad A x B y \rightleftharpoons x A^{+y}+y B^{-x}$

a	0	0
$a-S$	$x S$	$y S$

$K_{\text {sp }}=\left[A^{+y}\right]^{x}\left[B^{-x}\right]^{y}$
$=[x s]^{x} \times[y s]^{y}=x^{x} \cdot s^{x} \cdot y^{y} \cdot s^{y}$
$K_{\text {sp }}=x^{x} y^{y} S^{(x+y)}$
Ex. (i) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$\mathrm{K}_{\mathrm{sp}}=2^{2} \times 3^{3} \times(\mathrm{S})^{2+3}=4 \times 27 \times \mathrm{S}^{5}=108 \mathrm{~S}^{5}$
(ii) $\mathrm{Na}_{2} \mathrm{KPO}_{4}$
$\mathrm{K}_{\mathrm{sp}}=2^{2} \times 1^{1} \times 1^{1}(\mathrm{~S})^{2+1+1}=4 \mathrm{~S}^{4}$
(iii) $\mathrm{NaKRbPO}_{4}$
$\mathrm{K}_{\mathrm{sp}}=1^{1} \times 1^{1} \times 1^{1} \times 1^{1} \times(\mathrm{S})^{1+1+1+1}=\mathrm{S}^{4}$

APPLICATION OF SOLUBILITY PRODUCT (Ksp)

(A) TO FIND OUT THE SOLUBILITY (S) :
(i) Ksp of AB (Mono-mono, di-di, tri-tri valency) type salt -

Ex. $\mathrm{NaCl}, \mathrm{BaSO}_{4}, \mathrm{CH}_{3} \mathrm{COONa}, \mathrm{CaCO}_{3}, \mathrm{NaCN}, \mathrm{KCN}, \mathrm{NH}_{4} \mathrm{CN}, \mathrm{NH}_{4} \mathrm{Cl}$ etc.
$\mathrm{AB}(\mathrm{s}) \quad \rightleftharpoons \quad \mathrm{A}^{+}+\mathrm{B}^{-}$
100
1 S S
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{A}^{+}\right]\left[\mathrm{B}^{-}\right]$
$K_{s p}=s^{2}$ or $s=\sqrt{K_{s p}}$
(ii) Ksp of $A B_{2}$ or $A_{2} B$ (Mono-di or di-mono valency) type salt -

Ex. $\mathrm{CaCl}_{2}, \mathrm{CaBr}_{2}, \mathrm{~K}_{2} \mathrm{~S},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ etc.

$$
\begin{array}{lll}
\mathrm{AB}_{2}(\mathrm{~s}) & \rightleftharpoons & \mathrm{A}^{+2}+2 \mathrm{~B}^{-} \\
1 & 0 & 0 \\
1 & \mathrm{~s} & 2 \mathrm{~s} \\
\mathrm{~K}_{\text {sp }}=\left[\mathrm{A}^{+2}\right]\left[\mathrm{B}^{-}\right]^{2} & \\
\mathrm{~K}_{\mathrm{sp}}=\mathrm{s} \times(2 \mathrm{~s})^{2}=\mathrm{s} \times 4 \mathrm{~s}^{2}=4 \mathrm{~s}^{3} \\
\mathrm{~s}=\left(\frac{\mathrm{K}_{\text {sp }}}{4}\right)^{1 / 3}
\end{array}
$$

(iii) Ksp of AB_{3} or $\mathrm{A}_{3} \mathrm{~B}$ (Mono-tri or tri-mono valency) type salt -

Ex. $\mathrm{FeCl}_{3}, \mathrm{AlCl}_{3}, \mathrm{~K}_{3} \mathrm{PO}_{4}$ etc.

$$
\begin{array}{cl}
\mathrm{AB}_{3}(\mathrm{~s}) \rightleftharpoons & \mathrm{A}^{+3}+ \\
1 & 0
\end{array}
$$

(iv) Ksp of $A_{2} B_{3}$ or $A_{3} B_{2}$ (Di-tri or tri-di valency) type salt -

Ex. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}, \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ etc.

$$
\begin{aligned}
& \mathrm{A}_{2} \mathrm{~B}_{3}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{~A}^{+3}+\mathrm{3B} \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

(B) COMMON ION EFFECT ON SOLUBILITY:

Important point:- Solubility of substances always decreases in the presence of common ion.
Ex. (i) Find out the solubility of AgCl in the presence of C NaCl solution?

$$
\begin{aligned}
& \mathrm{AgCl} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \\
& \mathrm{S} \\
& \mathrm{~S} \\
& \mathrm{~K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] \\
& \mathrm{K}_{\text {sp }}=\mathrm{S}^{2} \\
& \text { In } \mathrm{NaCl} \text { solution } \\
& \begin{array}{l}
\mathrm{NaCl}
\end{array} \quad \text { (Let solubility of } \mathrm{AgCl} \text { is } \mathrm{S} \text { mol L} \\
& \mathrm{C}
\end{aligned} \mathrm{Na}^{-1} \text {) }
$$

Let solubility of AgCl in the presence of NaCl solution is $\mathrm{S}^{\prime} \mathrm{mol} \mathrm{L}^{-1}$.

$$
\begin{array}{llll}
\mathrm{AgCl} & \rightleftharpoons & \mathrm{Ag}^{+}+ & \mathrm{Cl}^{-} \\
\mathrm{S}^{\prime} & \mathrm{S}^{\prime} & & \mathrm{S}^{\prime}+\mathrm{C}
\end{array}
$$

According to L.O.M.A.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{\prime}\left[\mathrm{Cl}^{-}\right]^{\prime} \\
& \left.\mathrm{K}_{\mathrm{sp}}=\mathrm{S}^{\prime}\left(\mathrm{S}^{\prime}+\mathrm{C}\right)=\mathrm{S}^{\prime 2+} \mathrm{S}^{\prime} \mathrm{C} \quad \text { (Neglecting the higher power terms of } \mathrm{S}^{\prime}\right) \\
& \mathrm{K}_{\mathrm{sp}}=\mathrm{S}^{\prime} \mathrm{C} \\
& \mathrm{~S}^{\prime}=\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{C}}
\end{aligned}
$$

Ex. (ii) Find out the solubility of CaCl_{2} solution in the presence of C NaCl solution?

```
\(\mathrm{CaCl}_{2} \rightleftharpoons \mathrm{Ca}^{+2}+2 \mathrm{Cl}^{-}\)
    \(\mathrm{S} \quad \mathrm{S} \quad 2 \mathrm{~S} \quad\) [Let solubility of \(\mathrm{CaCl}_{2}\) is \(\mathrm{S} \mathrm{mol} \mathrm{L}^{-1}\) ]
    \(\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{Cl}^{-}\right]^{2}\)
        \(=4 \mathrm{~S}^{3}\)
```

For NaCl solution
$\begin{array}{ccc}\mathrm{NaCl} & \mathrm{Na}^{+}+\mathrm{Cl}^{-} \\ \mathrm{C} & \mathrm{C} & \mathrm{C} \\ {\left[\mathrm{Cl}^{-}\right]=\mathrm{C}}\end{array}$
Let solubility of CaCl_{2} in the presence of NaCl solution is $\mathrm{S}^{\prime} \mathrm{mol} \mathrm{L}^{-1}$.
$\mathrm{CaCl}_{2} \rightleftharpoons \mathrm{Ca}^{+2}+2 \mathrm{Cl}^{-}$
$S^{\prime} \quad S^{\prime} \quad 2 S^{\prime}+C$
According to L.O.M.A.
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{+2}\right]^{\prime}\left[\mathrm{Cl}^{-}\right]^{\prime 2}$
$\mathrm{K}_{\mathrm{sp}}=\mathrm{S}^{\prime}\left(2 \mathrm{~S}^{\prime}+\mathrm{C}\right)^{2}=\mathrm{S}^{\prime}\left(4 \mathrm{~S}^{\prime 2}+4 \mathrm{~S}^{\prime} \mathrm{C}+\mathrm{C}^{2}\right)$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^{\prime 3}+4 \mathrm{~S}^{\prime 2} \mathrm{C}+\mathrm{S}^{\prime} \mathrm{C}^{2} \quad$ (Neglecting the higher power terms of S^{\prime})

$$
S^{\prime}=\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{C}^{2}}
$$

Ex. (iii) Find out the solubility of NaCl in the presence of $\mathrm{C} \mathrm{CaCl}_{2}$ solution?

$$
\begin{gathered}
\mathrm{CaCl}_{2} \longrightarrow \mathrm{Ca}^{+2}+2 \mathrm{Cl}^{-} \\
\mathrm{C}
\end{gathered}
$$

Let solubility of NaCl in the presence of CaCl_{2} solution is $\mathrm{S}^{\prime} \mathrm{mol} \mathrm{L}^{-1}$.

$$
\mathrm{NaCl} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

$$
S^{\prime} \quad S^{\prime} \quad S^{\prime}+2 C
$$

According to L.O.M.A.
$\mathrm{K}_{\text {sp }}=\left[\mathrm{Na}^{+}\right]^{1}\left[\mathrm{Cl}^{-}\right]^{1}$
$K_{\text {sp }}=S^{\prime}\left(S^{\prime}+2 C\right)=S^{\prime 2}+2 S^{\prime} C \quad$ (Neglecting the higher power terms of S^{\prime})

$$
S^{\prime}=\frac{\mathrm{K}_{\mathrm{sp}}}{2 \mathrm{C}}
$$

(C) GROUP PRECIPITATION :
$\left.\begin{array}{ll}\text { (i) } Q_{s p}<K_{s p} & \Rightarrow \text { Unsaturated } \\ \text { (ii) } Q_{\mathrm{sp}}=K_{\mathrm{sp}} & \Rightarrow \text { Saturated }\end{array}\right\}$ No precipitation
(iii) $\mathrm{Q}_{\mathrm{sp}}>\mathrm{K}_{\mathrm{sp}} \quad \Rightarrow$ Super saturated \Rightarrow precipitation

Group	Group reagent	Basic radical	Composition and colour of precipitate
Zero	NaOH or $\mathrm{Ca}(\mathrm{OH})_{2}$, heat if required	$\mathrm{NH}_{4}{ }^{+}$	Ammonia gas is evolved
1	Dil HCl	$\begin{aligned} & \mathrm{Ag}^{+} \\ & \mathrm{Hg}_{2}{ }^{2+} \\ & \mathrm{Pb}^{2+} \end{aligned}$	AgCl ; White $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$; White PbCl_{2}; White
2 (A)	$\mathrm{H}_{2} \mathrm{~S}$ in presence of dil HCl (insoluble in YAS)	$\begin{aligned} & \mathrm{Hg}^{2+} \\ & \mathrm{Pb}^{2+} \\ & \mathrm{Bi}^{3+} \\ & \mathrm{Cu}^{2+} \\ & \mathrm{Cd}^{2+} \\ & \hline \end{aligned}$	HgS ; Black PbS ; Black $\mathrm{Bi}_{2} \mathrm{~S}_{3}$; Black CuS ; Black CdS ; Yellow
2 (B)	$\mathrm{H}_{2} \mathrm{~S}$ in presence of dil HCl (Soluble in YAS)	$\begin{aligned} & \mathrm{As}^{3+} \\ & \mathrm{Sb}^{3+} \\ & \mathrm{Sn}^{2+} \\ & \mathrm{Sn}^{4+} \end{aligned}$	$\mathrm{As}_{2} \mathrm{~S}_{3}$; Yellow $\mathrm{Sb}_{2} \mathrm{~S}_{3}$; Orange SnS ; Brown SnS_{2}; Yellow
3	$\mathrm{NH}_{4} \mathrm{OH}$ in presence of $\mathrm{NH}_{4} \mathrm{Cl}$	$\begin{aligned} & \mathrm{Fe}^{3+} \\ & \mathrm{Cr}^{3+} \\ & \mathrm{Al}^{3+} \end{aligned}$	$\mathrm{Fe}(\mathrm{OH})_{3}$; Reddish brown $\mathrm{Cr}(\mathrm{OH})_{3}$; Green $\mathrm{Al}(\mathrm{OH})_{3}$; Gelatinous white
4	$\mathrm{H}_{2} \mathrm{~S}$ in presence of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{Cl}$	$\begin{aligned} & \mathrm{Zn}^{2+} \\ & \mathrm{Mn}^{2+} \\ & \mathrm{Co}^{2+} \\ & \mathrm{Ni}^{2+} \\ & \hline \end{aligned}$	ZnS ; Dirty white MnS; Buff (or light pink) CoS; Blak NiS ; Black
5	$\left(\mathrm{NH}_{4}\right)_{2} \quad \mathrm{CO}_{3}$ in presence of $\mathrm{NH}_{4} \mathrm{OH}$	$\begin{aligned} & \mathrm{Ba}^{2+} \\ & \mathrm{Sr}^{2+} \\ & \mathrm{Ca}^{2+} \end{aligned}$	BaCO_{3}; White SrCO_{3}; White CaCO_{3}; White
6	$\mathrm{Na}_{2} \quad \mathrm{HPO}_{4}$ in presence of $\mathrm{NH}_{4} \mathrm{OH}$	Mg^{2+}	$\mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4}$; White

Extra Key Points :

(a). Hg^{+1} (us) \rightarrow Unstable in aqueous solution. [Stable in dimer form $\left(\mathrm{Hg}_{2}{ }^{+2}\right) \Rightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2}$]
$\mathrm{Hg}_{2} \mathrm{Cl}_{2} \rightleftharpoons \mathrm{Hg}_{2}{ }^{+2}+2 \mathrm{Cl}^{-}$
$S \quad S \quad 2 \mathrm{~S}$
$\mathrm{K}_{\text {sp }}=\left[\mathrm{Hg}_{2}{ }^{+2}\right]\left[\mathrm{Cl}^{-}\right]^{2}=(\mathrm{S})(2 \mathrm{~S})^{2}$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^{3}$
(b). Hg^{+2} (ic) $\rightarrow \mathrm{HgCl}_{2} \rightarrow$ stable in aqueous solution
$\mathrm{HgCl}_{2} \rightleftharpoons \mathrm{Hg}^{+2}+2 \mathrm{Cl}^{-}$
$S \quad S \quad 2 S$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^{3}$
(c). For precipitation of II group, $\mathrm{H}_{2} \mathrm{~S}$ gas is passed in acidic medium to decrease S^{-2} concentration by common ion effect. So that ionic product of cations of group II and S^{-2} ions exceed the solubility product of their corresponding metal sulphides. Therefore, only the cations of group II gets precipitated. But the sulphides of the cation of the other groupes (III, IV \& V) are not precipitated under these conditions because their solubility products are quite high.
When $\mathrm{H}_{2} \mathrm{~S}$ gas is directly passed through solution then $\mathrm{IV}^{\text {th }}$ group is also precipitated with $I^{\text {nd }}$ group.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{-2} \\
& \left.\mathrm{Ksp}_{\mathrm{II}}<\mathrm{Ksp}_{\mathrm{IV}}<\text { rradicals of II }{ }^{\text {nd }} \text { and IV group }\right]\left[\mathrm{S}^{-2}\right]
\end{aligned}
$$

When $\mathrm{H}_{2} \mathrm{~S}$ gas pass in acidic medium $\left[\mathrm{H}^{+}\right]$then only $I^{\text {nd }}$ group radicals are precipitated.
$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{-2}$
Ksp $_{\text {II }}<$ [radicals of II ${ }^{\text {nd }}$ and IV group] $\left[\mathrm{S}^{-2}\right]<\mathrm{Ksp}_{\text {IV }}$
(d). For precipitation of group III, $\mathrm{NH}_{4} \mathrm{OH}$ is added in the presence of $\mathrm{NH}_{4} \mathrm{Cl}$ to decrease the concentration of OH^{-}by common ion effect so ionic product of cations of group III and hydroxides ions exceed the solubility product of their corresponding metal hydroxides and only group III cations will precipitated. On the other hand cations of group IV, V and VI , which require large concentration of OH^{-}due to their high solubility product, will not be precipitated.
(e). In IV group, $\mathrm{H}_{2} \mathrm{~S}$ gas is passed in basic medium to increase S^{-2} ion concentration by odd ion effect, so that the ionic product of cations of group IV and S^{-2} ions exceed the solubility product of their corresponding metal sulphide and hence gets precipitated.

So $\left[\mathrm{S}^{-2}\right]^{\uparrow}$
Ksp ${ }_{\text {IV }}<$ [Radicals of group IV] [S S^{-2}]
(f). In V group, order of $\mathrm{K}_{\text {sp }}$ and precipitation is -

$$
\mathrm{BaCO}_{3}<\mathrm{SrCO}_{3}<\mathrm{CaCO}_{3}
$$

Additional Information

(A) Various forms of K_{W}
(a) $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$for water $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
(b) $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]^{2}$
(c) $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{OH}^{-}\right]^{2}$
(d) $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
(e) $\mathrm{K}_{\mathrm{W}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} \quad\left\{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}^{+}\right]\right\}$

Hydronium Proton
ion

(B) Isohydric solution -

If different-different solution has same pH are called isohydric solution.
Note :- Isohydric conditions for two given weak acids HA_{1} and HA_{2} which has concentration C_{1} and C_{2} and ionisation constants are $K a_{1}$ and $K a_{2}$ respectively.
Then $\left[\mathrm{H}^{+}\right]_{1}=\sqrt{\mathrm{Ka}_{1} \mathrm{C}_{1}}$ and $\left[\mathrm{H}^{+}\right]_{2}=\sqrt{\mathrm{Ka}_{2} \mathrm{C}_{2}}$
According to given condition for isohydric solution pH of different solution is same.
Hence $\left[\mathrm{H}^{+}\right]_{1}=\left[\mathrm{H}^{+}\right]_{2}$

$$
\begin{gathered}
\sqrt{\mathrm{Ka}_{1} \mathrm{C}_{1}}=\sqrt{\mathrm{Ka}_{2} \mathrm{C}_{2}} \\
\mathrm{Ka}_{1} \mathrm{C}_{1}=\mathrm{Ka}_{2} \mathrm{C}_{2} \\
\text { or } \frac{\mathrm{Ka}_{1}}{\mathrm{~V}_{1}}=\frac{\mathrm{Ka}_{2}}{\mathrm{~V}_{2}} \quad \because \mathrm{C} \propto \frac{1}{\mathrm{~V}}
\end{gathered}
$$

(C) Strength of Acids and Bases :-

We known Strength of acid $\propto\left[\mathrm{H}^{+}\right]$
If there are two weak acids $H A_{1}$ and $H A_{2}$ which has concentration C_{1} and C_{2}, degree of ionisation α_{1} and α_{2} and ionisation constants $K a_{1}$ and $K a_{2}$ respectively then ratio of their strength of acids.

We know $\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha=\sqrt{\mathrm{KaC}}$
So $\frac{\text { Strength of weak acidHA } A_{1}}{\text { Strength of weak acid } \mathrm{HA}_{2}}=\frac{\left[\mathrm{H}^{+}\right]_{1}}{\left[\mathrm{H}^{+}\right]_{2}}=\frac{\mathrm{C}_{1} \alpha_{1}}{\mathrm{C}_{2} \alpha_{2}}=\frac{\sqrt{\mathrm{Ka}_{1} \mathrm{C}_{1}}}{\sqrt{\mathrm{Ka}_{2} \mathrm{C}_{2}}}$
if $\mathrm{C}_{1}=\mathrm{C}_{2}$
$\frac{\text { Strength of weak acid } \mathrm{HA}_{1}}{\text { Strength of weak acid } \mathrm{HA}_{2}}=\sqrt{\frac{K \mathrm{a}_{1}}{\mathrm{Ka}}}$
Thus the relative strength of two acids of equimolar concentration can be compared by taking square root of the ratio of their ionisation constants.
(D) Resultant concentration :- When two non reactive electrolytes $A B$ and $C D$ which has concentration C_{1} and C_{2} and volume V_{1} and V_{2} respectively are mixed in one container then total volume of container is $\left(V_{1}+V_{2}\right)$ and resultant concentration of each electrolyte is-
Resultant concentration of $A B \quad \Rightarrow \quad C_{1}^{\prime}=\frac{C_{1} V_{1}}{V_{1}+V_{2}}$
Resultant concentration of $C D \quad \Rightarrow \quad C_{2}^{\prime}=\frac{C_{2} V_{2}}{V_{1}+V_{2}}$
If volume of both electrolytes are equal i.e. $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}$
then resultant concentration of each electrolyte is becomes half of initial concentration.

$$
\begin{aligned}
& \mathrm{C}_{1}^{\prime}=\frac{\mathrm{C}_{1} \mathrm{~V}}{\mathrm{~V}+\mathrm{V}}=\frac{\mathrm{C}_{1}}{2}, \quad \mathrm{C}_{2}^{\prime}=\frac{\mathrm{C}_{2} \mathrm{~V}}{\mathrm{~V}+\mathrm{V}}=\frac{\mathrm{C}_{2}}{2} \\
& \mathrm{C}_{1}^{\prime}=\frac{\mathrm{C}_{1}}{2} \quad \text { and } \quad \mathrm{C}_{2}^{\prime}=\frac{\mathrm{C}_{2}}{2}
\end{aligned}
$$

Note: ' n ' different solutions of non reactive different electrolytes are mixed in equal volume then resultant concentration of each electrolyte is $1 / n$ times.

Ex. 15 The solubility of BaSO_{4} in water is $1.07 \times 10^{-5} \mathrm{~mol}^{-3}$ estimate its solubility product
Sol. Solubility equilibrium for BaSO_{4} is
$\mathrm{BaSO}_{4_{(\mathrm{s})}} \rightleftharpoons \mathrm{Ba}_{(\mathrm{eq})}^{+2}+\mathrm{SO}_{4(\mathrm{eq})}^{2-}$
$\mathrm{S}=1.07 \times 10^{-5} \mathrm{~m}$
$\mathrm{K}_{\mathrm{sp}}=(\mathrm{s})^{2}=\left(1.07 \times 10^{-5}\right)^{2}=1.145 \times 10^{-10}$
Ex 16 The solubility product of AgBr is 5.2×10^{-13}, calculate its solubility in $\mathrm{mol} \mathrm{dm}^{-3}$ and $\mathrm{g} \mathrm{dm}^{-3}$.
Sol. $\quad \mathrm{AgBr}_{(\mathrm{s})} \rightleftharpoons \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{Br}^{-}{ }_{(\mathrm{aq})}$
$\mathrm{K}_{\mathrm{sp}}=(\mathrm{s})^{2}$
$\mathrm{S}=\sqrt{\mathrm{K}_{s p}}=\sqrt{5.2 \times 10^{-13}}=7.2 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$
The solubility in $\mathrm{g} \mathrm{dm}^{-3}=$ molar solubility \times molar mass $=7.2 \times 10^{-7} \times 107.0=1.35 \times 10^{-4} \mathrm{~g} \mathrm{dm}^{-3}$
Ex. 17 Equal volume of $0.04 \mathrm{M} \mathrm{CaCl}_{2} \& 0.0008 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ are mixed. Will a precipitate form ? $\mathrm{K}_{\text {sp }}$ for $\mathrm{CaSO}_{4}=2.4 \times 10^{-5}$
Sol. $\quad \mathrm{CaCl}_{0.04 \mathrm{~V}}^{2}+\underset{0.0008 \mathrm{~V}}{\mathrm{Na}_{2} \mathrm{SO}_{4}} \rightarrow \underset{0}{\mathrm{CaSO}_{4}}+\underset{0}{2 \mathrm{NaCl}}$
Suppose VmL of both are mixed
$\left[\mathrm{Ca}^{2+}\right]=\frac{0.04 \mathrm{v}}{2 \mathrm{v}} ;\left[\mathrm{SO}_{4}^{2-}\right]=\frac{0.0008 M}{2 \mathrm{v}}$
$\therefore\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{SO}_{4}^{2-}\right]=\frac{0.04 \mathrm{v}}{2 \mathrm{v}} \times \frac{0.0008 \mathrm{~V}}{2 \mathrm{v}}=8 \times 10^{-6}$
Thus $\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]$ in solution $<\mathrm{KsP}$
$\therefore \mathrm{CaSO}_{4}$ will not precipitate.

PRACTICE SECTION-03

Q. 1 The relative strength of two weak acids $\mathrm{HCOOH}\left(\mathrm{K}_{\mathrm{a}}=2 \times 10^{-4}\right)$ and $\mathrm{HF}\left(\mathrm{K}_{\mathrm{a}}=6.6 \times 10^{-4}\right)$ is :
(1) 0.30
(2) 0.55
(3) 3.33
(4) 1.82
Q. 2 The solubility product of AgCl is 4.0×10^{-10} at 298 K . The solubility of AgCl in 0.04 m CaCl 2 will be?
(1) $2 \times 10^{-5} \mathrm{~m}$
(2) $1 \times 10^{-4} \mathrm{~m}$
(3) $5 \times 10^{-9} \mathrm{~m}$
(4) $2.2 \times 10^{-4} \mathrm{~m}$
Q. 3 On adding 0.1 M solution each of $\mathrm{Ag}^{+}, \mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}$ ions in a $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution species first precipitated is $\left(\mathrm{K}_{\mathrm{sp}} \mathrm{BaSO}_{4}=10^{-11}, \mathrm{~K}_{\mathrm{sp}} \mathrm{CaSO}_{4}=10^{-6}, \mathrm{~K}_{\mathrm{sp}} \mathrm{Ag}_{2} \mathrm{SO}_{4}=10^{-5}\right)$
(1) $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
(2) BaSO_{4}
(3) CaSO_{4}
(4) all of these
Q. 4 Equal volumes of the following Ca^{2+} and F^{-}solutions are mixed. In which of the solutions will precipitation occur? $\left(\mathrm{K}_{\text {sp }}\right.$ of $\left.\mathrm{CaF}_{2}=1.7 \times 10^{-10}\right)$
(1) $10^{-2} \mathrm{M} \mathrm{Ca}^{2+}+10^{-5} \mathrm{M} \mathrm{F}^{-}$
(2) $10^{-3} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
(3) $10^{-4} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
(4) $10^{-2} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
Q. 5 Solubility product constants ($K_{\text {sp }}$) of salts of types $M X, M X_{2}$ at $M_{3} X$ at temperature T are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$ and 2.7×10^{-15} respectively. Solubility $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ of the salts at temperature T are in the order.
(1) $M X>M X_{2}>M_{3} X$
(2) $M_{3} X>M X_{2}>M X$
(3) $M X_{2}>M_{3} X>M X$
(4) $M X>M_{3} X>M X_{2}$
Q. 6 At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ in water is $3.2 \times 10^{-17} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$. What is the solubility of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ in water at $25^{\circ} \mathrm{C}$?
(1) $1.2 \times 10^{-12} \mathrm{M}$
(2) $3.0 \times 10^{-6} \mathrm{M}$
(3) $2 \times 10^{-6} \mathrm{M}$
(4) $1.2 \times 10^{-16} \mathrm{M}$
Q. 7 How many times $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution should be diluted so that pH of the solution is doubled? $\left(\mathrm{K}_{\mathrm{a}}\right.$ of acetic acid $=1.8 \times 10^{-5}$)
(1) 210 times
(2) 200 times
(3) 5.55×10^{2} times
(4) 5.55×10^{4} times

ANSWER KEY

Que.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Ans.	2	3	2	4	4	3	4

INTRODUCTION

pH of some important substance :-

(i) Blood	\longrightarrow	7.4
(ii) Tear	\longrightarrow	7.4
(iii) Gastric Juice	\longrightarrow	1 to 3
(iv) Soft drink	\longrightarrow	2 to 4
(v) Acidic rain	\longrightarrow	6
(vi) Milk	\longrightarrow	6.3 to 6.6
(vii) Water	\longrightarrow	7

TYPES OF pH

(i) pH of SA and SB .
$\left[\mathrm{H}^{+}\right]=\mathrm{C},\left[\mathrm{OH}^{-}\right]=\mathrm{C}$
(ii) pH of WA and WB .
$\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha,\left[\mathrm{OH}^{-}\right]=\mathrm{C} \alpha$
(iii) pH of very dilute solution. (Consider $\mathrm{H}^{+} \& \mathrm{OH}^{-}$of $\mathrm{H}_{2} \mathrm{O}$ also)
(iv) pH of salt solution.

(a)	SA	SB	Type	Salt	(always 7)
(b)	SA	WB	Type	Salt	(<7)
(c)	WA	SB	Type	Salt	(> 7)
(d)	WA	WB	Type	Salt	(Almost 7)

(v) pH of mixture of acid and base.
(a) pH of mixture of acids:
$\mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}+\mathrm{N}_{3} \mathrm{~V}_{3}+$ \qquad . NV
$\mathrm{V}=$ Volume of final solution $=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\ldots$ \qquad
$\mathrm{N}=$ Normality of final solution $=\left[\mathrm{H}^{+}\right]$in final solution.
(b) pH of mixture of base:

$V=$ Volume of final solution $=V_{1}+V_{2}+V_{3}+$ \qquad
$\mathrm{N}=$ Normality of final solution $=\left[\mathrm{OH}^{-}\right]$in final solution.
(c) pH of mixture of acids and bases:

For acid:

$$
N_{1} V_{1}+N_{2} V_{2}+N_{3} V_{3}+\ldots \ldots \ldots \ldots \ldots . .=(N V) \text { Acid }
$$

For base:

$$
N_{1} V_{1}+N_{2} V_{2}+N_{3} V_{3}+\ldots \ldots \ldots \ldots \ldots . .=(N V) \text { Base }
$$

If (NV)Acid $>(N V)$ Base then solution is acidic.
NV = (NV)Acid $-(N V)$ Base and
$\left[\mathrm{H}^{+}\right]=\mathrm{N}$
If (NV)Base $>(N V)$ Acid then solution is basic.
$N V=(N V)$ Base $-(N V)$ Acid and
$\left[\mathrm{OH}^{-}\right]=\mathrm{N}$

BUFFER SOLUTION

INTRODUCTION

A. Definition:

Those solution which have resistive nature for pH change are called Buffer Solution.
B. Properties of buffer solution:
(i) pH of buffer solution never depends on their concentration and dilution. (water add or escape).
(ii) When some amount of strong acid and strong base are mixed in buffer solution then pH of buffer solution is almost unchange.
Note :- Change in pH of a solution is due to change in concentration of present free H^{+}or OH^{-}ions.

TYPES OF BUFFER SOLUTION

(A). Simple buffer solution
(B). Mixed buffer solution
(i) Acidic buffer solution (ii) Basic buffer solution
(A) Simple Buffer Solution :- Aqueous solution of weak acid-weak base (WA - WB) types of salt.

Ex. $\mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{NH}_{4} \mathrm{CN}, \mathrm{AgCN}$ etc.

$$
\begin{aligned}
& \mathrm{pH}=7+\frac{1}{2} \mathrm{pKa}-\frac{1}{2} \mathrm{pK}_{\mathrm{b}} \\
& \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH}
\end{aligned}
$$

Case 1. When mixing of acid $\left[\mathrm{H}^{+}\right]$

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH} \\
& \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Case 2. When mixing of base $\left[\mathrm{OH}^{-}\right]$
$\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}$

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

(B) Mixed Buffer Solution :
(i) Acidic buffer solution :- Aqueous solution of mixture of weak acid and salt of same weak acid with any type of strong base is called acidic buffer solution.
Ex. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
WA
WASB

- Weak acid + Strong base

1. When $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \Rightarrow$ Salt (WA SB)
2. When $N_{1} \mathrm{~V}_{1}>\mathrm{N}_{2} \mathrm{~V}_{2} \Rightarrow$ Acidic buffer solution (WA + WASB salt)
[$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$]
$\left[\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COO}^{-}\right] \quad \mathrm{Na}^{+}$(Spectator ion)
Case 1. When mixing of acid $\left[\mathrm{H}^{+}\right]$
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}$
Case 2. When mixing of base $\left[\mathrm{OH}^{-}\right]$
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$
ie. in aqueous solution if weak acid and its conjugate are present then it is definitely acidic buffer solution.
(a) pH of acidic buffer solution:
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
Acid + Salt
$\left[\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COO}^{-}\right]+\mathrm{Na}^{+}$
Acid Conjugate
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
or $\quad\left[\mathrm{H}^{+}\right]=\frac{\mathrm{Ka}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}=\frac{\mathrm{Ka}[\text { Acid }]}{[\text { Conjugate }]}$
taking -log on both sides
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \frac{\text { [Acid] }}{\text { [Conjugate] }}$ or $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { [Conjugate] }}{\text { [Acid] }}$
Henderson's equation:
$\mathrm{pH}=\mathrm{pKa}+\log \frac{\text { [Salt }]}{[\text { Acid }]}$
(b) $\mathbf{p H}$ range of acidic buffer solution:
$\mathrm{CH}_{3} \mathrm{COOH} \quad \mathrm{CH}_{3} \mathrm{COONa}$
$1: 10 \quad \mathrm{pH}=\mathrm{pKa}+\log \frac{10}{1}$

$$
\mathrm{pH}=\mathrm{pKa}+1
$$

$\mathrm{pH}=\mathrm{pKa}-1$
So pH range

$$
\mathrm{pH}=\mathrm{pKa} \pm 1
$$

(c) Maximum buffer action condition of acidic buffer solution :

$$
\begin{array}{ccc}
\mathrm{CH}_{3} \mathrm{COOH} & \mathrm{CH}_{3} \mathrm{COONa} \\
1 & : \quad 1 & \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{1}{1} \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}
\end{array}
$$

(ii) Basic buffer solution :

Definition : Aqueous solution of mixture of weak base and salt of same weak base with any type of strong acid is called basic buffer solution.

Ex. $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl} \quad\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{NH}_{4} \mathrm{Cl}\right]$
$\left[\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4}^{+}\right]+\mathrm{Cl}^{-}$[Spectator]
Case 1. When mixing of acid $\left[\mathrm{H}^{+}\right]$
$\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$.
Case 2. When mixing of base $\left[\mathrm{OH}^{-}\right]$
$\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}$
(a) pOH of basic buffer solution:
$\left[\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}\right]$
$\mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]}$ or $\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{\mathrm{b}}\left[\mathrm{NH}_{4} \mathrm{OH}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}$
taking -log on both sides $\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]}$
Henderson's equation : $\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]}$
(b) pOH range of basic buffer solution:

$\mathrm{NH}_{4} \mathrm{OH}$	$: \mathrm{NH}_{4} \mathrm{Cl}$
1	$: 10$
10	$: 1$
pOH	$=\mathrm{pK}_{\mathrm{b}} \pm 1$

(c) Maximum buffer action condition of basic buffer solution :
$\mathrm{NH}_{4} \mathrm{OH}: \mathrm{NH}_{4} \mathrm{Cl}$
1 : 1
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}$

BUFFER CAPACITY

Definition :- It is defined as the number of moles of acid (or base) require by one litre of a buffer solution for changing its pH by one unit.
Buffer capacity $=\frac{\text { Number of equivalents of acid or base added per litre }}{\text { Change in } \mathrm{pH} \text { of buffer solution }}$
Ex. 18 When 2 moles of HCl is added to 1 L . of an acidic buffer solution, its pH changes from 3.9 to 3.4. Find its buffer capacity.
Sol. B.C. $=\frac{2}{0.5}=4$
Ex. 19 How much volume of 0.2 m solution of acid should be added to 100 mL or 0.2 m soln or sodium are take to prepare a buffer sol ${ }^{\mathrm{n}}$ of $\mathrm{pH}=6$?
pKa or $\mathrm{CH}_{3} \mathrm{COOH}=4.74$
Sol. $\mathrm{P}^{\mathrm{H}}=\mathrm{P}^{\mathrm{ka}}+\log \frac{\text { Salt }}{\text { Acid }}$
$\log \frac{[\text { Salt }]}{[\text { Acid }]}=\mathrm{P}^{\mathrm{H}}-\mathrm{P}^{\mathrm{ka}}=6-4.74=1.26$
$\frac{[\text { Salt }]}{[\text { Acid }]}=18.2$
Mole of $\mathrm{CH}_{3} \mathrm{COONa}$ in solution $\frac{100 \times 0.2}{1000}=0.02$
Let volume of 0.2 acetic Acid added $\frac{\mathrm{U} \times 0.2}{1000}$
$\frac{0.2}{U \times \frac{0.2}{1000}}=10.2$
$\mathrm{U}=5.49 \mathrm{~mL}$

PRACTICE SECTION-04

Q. 1 pH value of which of the following is NOT equal to one?
(1) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(2) $0.1 \mathrm{M} \mathrm{NHO}_{3}$
(3) $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(4) $50 \mathrm{~cm}^{3} 0.4 \mathrm{M} \mathrm{HCl}+50 \mathrm{~cm}^{3} 0.2 \mathrm{M} \mathrm{NaOH}$
Q.2 Calculate the pH of a solution which contains 100 mL of 0.1 M HCl and 9.9 mL of 1.0 M NaOH .
(1) 3.04
(2) 6.08
(3) 11.96
(4) None
Q. 3 Which one of the following will decrease the pH of 50 mL of 0.01 M hydrochloric acid?
(1) Addition of 50 mL of 0.01 M HCl
(2) Addition of 50 mL of 0.002 M HCl
(3) Addition of metallic zinc
(4) Addition of 5 mL of 1 M HC
Q. 4 The pH of a solution obtained by mixing 50 mL of 0.2 M HCl with 50 mL of $0.20 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is
(1) 0.30
(2) 0.70
(3) 1.00
(4) 2.00
Q. 540 ml of 0.1 M ammonia is mixed with 20 ml of 0.1 M HCl . What is the pH of the mixture? (pK_{b} of ammonia solution is 4.74).
(1) 4.74
(2) 2.26
(3) 9.26
(4) 5.00
Q. 6 How many litres of water must be added to 1 litre of an aqueous solution of HCl with pH of 1 to create an aqueous solution of with pH of 2 ?
(1) 9.0 L
(2) 0.1 L
(3) 0.9 L
(4) 2.0 L
Q. 7 In what volume ratio $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ solutions (each 1 M) should be mixed to get a buffer solution of pH 9.80? (pKb of $\mathrm{NH}_{4} \mathrm{OH}=4.74$)
(1) $1: 2.5$
(2) $2.5: 1$
(3) $1: 3.5$
(4) $3.5: 1$
Q. 8 A buffer solution contains 0.1 mole of sodium acetate in $1000 \mathrm{~cm}^{3}$ of 0.1 M acetic acid. To the above buffer solution 0.1 mole of sodium acetate is further added and dissolved. The pH of the resulting buffer is equal to
\qquad .. .
(1) $\mathrm{pKa}-\log 2$
(2) pKa
(3) $\mathrm{pKa}+2$
(4) $\mathrm{pKa}+\log 2$

ANSWER KEY

Que.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Ans.	1	1	4	3	3	1	3	4

INDICATOR

INTRODUCTION

(A) Definition: - Those compound or substance which indicate the nature of solution by changes their self colour.
(B) Types of indicators:
(a). Acidic indicator (HIn)

Ex. Phenolphthalein (HPh)
$\mathrm{HPh} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Ph}^{-}$ colourless pink
(b). Basic indicator (InOH)

Ex. Methyl orange (MeOH)
$\mathrm{MeOH} \rightleftharpoons \mathrm{Me}^{+}+\mathrm{OH}^{-}$
yellow orange red

OSTWALD THEORY OF INDICATORS

(i) According to this theory, all the indicators are weak organic acid or base.
(ii) Every indicator has light colour in its unionised form and dark colour in ionised form.
(iii) Every indicator works in opposite medium (it means if it is acidic then it will work in basic medium and vice versa) it means colour change in opposite medium due to their unionised form is change in ionised form.
Ex. Acidic indicator [HPh]
Case

1. $\mathrm{HPh} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Ph}^{-}$

In highly acidic medium $\left[\mathrm{H}^{+}\right]$here
[HPh] >> $\left.\mathrm{Ph}^{-}\right]$
Colourless
Case 2. $\mathrm{HPh} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Ph}^{-}$
In highly basic medium $\left[\mathrm{OH}^{-}\right]$here :
[$\mathrm{Ph}{ }^{-}$] >> [HPh]
Pink colour
(a) pH of acidic indicator -

$$
\begin{aligned}
& \mathrm{HIn} \rightleftharpoons \mathrm{H}^{+}+\mathrm{In}^{-} \\
& \mathrm{K}_{\mathrm{I}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]} \\
& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{1}[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}}
\end{aligned}
$$

Taking - log on both sides
$\mathrm{pH}=\mathrm{pK}_{\mathrm{l}}-\log [\mathrm{HIn}]+\log \left[\mathrm{In}^{-}\right]$
$\mathrm{pH}=\mathrm{pK}+\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$
$\mathrm{pH}=\mathrm{pK}_{1}+\log \frac{\text { [lonised form] }}{\text { [Unionised form] }}$
(b) pOH of basic indicator -
$\mathrm{InOH} \rightleftharpoons \mathrm{In}^{+}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{I}}=\frac{\left[\mathrm{In}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{InOH}]}$
$\mathrm{pOH}=\mathrm{pK}_{1}+\log \frac{\text { [lonised form] }}{\text { [Unionised form] }}$
(c) pH range of acidic indicator:

(d) pOH range of basic indicator :

[InOH]	
1	10
10	1

(e) Neutral condition for indicators (No working condition)

For acidic indicator			For basic indicators		
$[\mathrm{HIn}]$	$:$	$\left[\mathrm{In}^{-}\right]$		$[\mathrm{InOH}]$	$:$
1	$:$	1	1		$\left[\mathrm{ln}^{+}\right]$
	$\mathrm{pH}=\mathrm{pK}_{1}$			1	
			$\mathrm{pOH}=\mathrm{pK}_{1}$		

S.No.	Name of indicator	Colour in acidic medium	Colour in basic medium	Working pH range of indicators
1.	Methyl orange (MeOH)	Orange red	Yellow	3.1 to 4.5
2.	Methyl red	Red	Yellow	4.2 to 6.2
3.	Phenol red	Yellow	Red	6.2 to 8.2
4.	Phenolphthalein (HPh)	Colourless	Pink	8.2 to 10.2

ACID-BASE TITRATION

S.No.	Type of titration	pH range of titration	Suitable indicators
1.	SA/SB.	$3-11$	All indicators (MeOH, HPh etc.)
2.	SA/WB	$3-7$	Methyl orange (MeOH) and methyl red
3.	WA/SB	$7-11$	Phenolphthalein (HPh)
4.	WA/WB	$6.5-7.5$	Phenol red

Important points of titration:

(i). Titration is always possible in two opposite solution. (i.e. one is acidic and other is basic).
(ii). For any titration only that indicator is suitable if their working pH range is in pH range of titration.
(iii). At the end point of titration equivalents of acids and bases are always same.
(iv). At the end point, nature of solution depends on the type of titration.

SA/SB	$-\quad$ Neutral $(\mathrm{pH}=7)$
$\mathrm{SA} / \mathrm{WB}-$	Acidic
WA/SB -	Basic
WA/WB -	Any one possible

BENZENOID AND QUINONOID THEORY OF INDICATORS

(i). According to this theory, all indicators are aromatic compounds.
(ii). Unionised form of indicator is called benzenoid form and ionised form is called quinonoid form.

Benzenoid form

Quinonoid form
(Unionised form)
(Ionised form)
(iii) Every indicator has light colour in its benzenoid form and dark colour in quinonoid form.
(iv) Every indicator works in opposite medium due to their benzenoid form (unionised form) is changes in quinonoid form (ionised form).
(a)

Benzenoid form (HPh)

Quinonoid form
(Ph)
(b)

Benzenoid form
(MeOH)

Quinonoid form
(MeOH)

Acidic solution (red)

ACID AND BASE CONCEPT

ARRHENIUS CONCEPT (1884)

(a) Acid:- According to this concept, those substances which produce free H^{+}ions in aqueous solution are called acid.

Ex. $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CH}_{3} \mathrm{COOH}$ etc.

$$
\begin{aligned}
& \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}^{+} \text {(aq.) }+\mathrm{Cl}^{-} \text {(aq.) } \\
& \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}^{+} \text {(aq.) }+\mathrm{SO}_{4}^{-2} \text { (aq.) } \\
& \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-} \text {(aq.) }+\mathrm{H}^{+} \text {(aq.) }
\end{aligned}
$$

(b) Base:- Those substances which produce free OH^{-}ions in aqueous solution are called base.

Ex. $\mathrm{NaOH}, \mathrm{KOH}, \mathrm{Cs}(\mathrm{OH}), \mathrm{Rb}(\mathrm{OH}), \mathrm{NH}_{4} \mathrm{OH}, \mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Al}(\mathrm{OH})_{3}$ etc.

$$
\begin{aligned}
& \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Na}^{+} \text {(aq.) }+\mathrm{OH}^{-} \text {(aq.) } \\
& \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ba}^{+2} \text { (aq.) }+2 \mathrm{OH}^{-} \text {(aq.) } \\
& \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Al}^{+3} \text { (aq.) }+3 \mathrm{OH}^{-} \text {(aq.) }
\end{aligned}
$$

(c) Nature of water: - According to this concept nature of water is neutral and act as a solvent.
(d) Neutralisation Reaction: - Those reactions in which acid and base react together to form water molecule are called neutralisation reactions.
i.e. $\mathrm{Na}^{+}+\mathrm{OH}^{-}+\mathrm{H}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
(e) Strength of acids and bases:- This concept explains the strength of acids and bases depending upon the basis of degree of ionisation i.e. those electrolyte which have high degree of ionisation are strong electrolyte and those which have low degree of ionisation is weak electrolyte.
Ex. For strong electrolytes $\alpha \simeq 100 \%$

BRONSTED-LOWRY CONCEPT (1923)

It is based upon the exchange of proton.
(a) Acid:- According to this concept those substances which have tendency to donate the proton $\left(\mathrm{H}^{+}\right)$by any method in any solvent are called acids.
Ex. (i) $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{H}_{3} \mathrm{PO}_{3}$ etc.
(ii) $\mathrm{HS}^{-}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}^{-2}, \mathrm{H}_{2} \mathrm{O}$ etc.
(iii) $\mathrm{NH}_{4}{ }^{+}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{PH}_{4}{ }^{+}, \mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}$etc.
(vi) $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3},\left[\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+1},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$ etc.
(a) HCl (Acid) $+\mathrm{H}_{2} \mathrm{O}$ (Solvent) \qquad $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
(b) HS^{-}(Acid) $+\mathrm{H}_{2} \mathrm{O}$ (Solvent) \qquad

$$
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{S}^{-2}
$$

(c) $\mathrm{NH}_{4}{ }^{+}$(Acid) $+\mathrm{H}_{2} \mathrm{O}$ (Solvent) \qquad

$$
\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

(d) $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$ (Acid) $+\mathrm{H}_{2} \mathrm{O}$ (Solvent) \qquad $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{+2}+\mathrm{H}_{3} \mathrm{O}^{+}$
(b) Base:- Those substances which have tendency to accept the proton by any method in any solvent are called the bases.
Ex. (i) $\mathrm{NaOH}, \mathrm{KOH}, \mathrm{Rb}(\mathrm{OH}), \mathrm{Cs}(\mathrm{OH}), \mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{NH}_{4} \mathrm{OH}, \mathrm{Al}(\mathrm{OH})_{3}$ etc.
(ii) $\mathrm{HS}^{-}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}^{-2}, \mathrm{H}_{2} \mathrm{O}$ etc.
(iii) $\mathrm{NH}_{3}, \mathrm{RNH}_{2}, \mathrm{R}_{2} \mathrm{NH}, \mathrm{R}_{3} \mathrm{~N}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}$ etc.
(iv) $\mathrm{O}^{-2}, \mathrm{SO}_{4}^{-2}, \mathrm{CO}_{3}^{-2}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{CN}^{-}$etc.
(a) NaOH (Base) $+\mathrm{H}_{2} \mathrm{O}$ (Solvent) \longrightarrow

$$
\mathrm{OH}^{-} \xrightarrow[\text { Unstable }]{+\mathrm{NaOH}_{+}^{+}} \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

(b) HS^{-}(Base) $+\mathrm{H}_{2} \mathrm{O}$ (Solvent)

\qquad

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{OH}^{-}
$$

(c) NH_{3} (Base) $+\mathrm{H}_{2} \mathrm{O}$ (Solvent)
$\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
(d) CO_{3}^{-2} (Base) $+\mathrm{H}_{2} \mathrm{O}$ (Solvent)
$\mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-}$
(c) Nature of water:- According to this concept nature of water is amphoteric or amphiprotic i.e. water can act as both acid and base.
(i) HCl (Acid) $+\mathrm{H}_{2} \mathrm{O}$ (Base) $\longrightarrow \mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(ii) NH_{3} (Base) $+\mathrm{H}_{2} \mathrm{O}$ (Acid) $\longrightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$
(d) Neutralisation Reaction:- According to this concept those reaction in which acid and base react together and convert into their respective conjugate acid and base are called neutralisation reactions.

Ex.

(e) Strength of acids and bases :- This concept explain the strength of acid and base depending upon the basis of relative tendency to accept or donate the proton.
(i) HClO_{4}
(ix) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(ii) HI
(x) HF
(iii) HBr
(xi) $\mathrm{CH}_{3} \mathrm{COOH}$
(xvii) $\mathrm{H}-\mathrm{OH}$
(iv) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(xii) $\mathrm{H}_{2} \mathrm{CO}_{3}$
(xviii) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{OH}$
(v) HCl
(xiii) $\mathrm{H}_{2} \mathrm{~S}$
(xix) $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(vi) HNO_{3}
(xiv) $\mathrm{NH}_{4}{ }^{+}$
(xx) NH_{3}
(vii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(xv) HCN
(xxi) $\mathrm{R}-\mathrm{NH}_{2}$
(xxii) CH_{4}
(viii) HSO_{4}^{-}
(xvi) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$

Ex. (i)	$\mathrm{HCl}+$	$\mathrm{H}_{2} \mathrm{O}$		\rightleftharpoons	Cl^{-}	+	$\mathrm{H}_{3} \mathrm{O}^{+}$
	Strong acid		Strong base		Weak base		Weak acid
(ii)	$\mathrm{CH}_{3} \mathrm{COOH}$	$+$	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	+	$\mathrm{H}_{3} \mathrm{O}^{+}$
	Weak acid		Weak base		Strong base		Strong acid
(iii)	NH_{3}	+	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathrm{NH}_{4}{ }^{+}$	+	OH^{-}
	Weak base		Weak acid		Strong acid		Strong base
(iv)	$\mathrm{HCl}+$		${ }_{3} \mathrm{COOH}$	\rightleftharpoons	Cl^{-}	+	$\mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}$
	Weak acid		Weak base		Strong base		Strong acid
(v)	$\mathrm{HCl}+$	NH_{3}		\rightleftharpoons	Cl^{-}	+	$\mathrm{NH}_{4}{ }^{+}$
	Strong acid		Strong base		Weak base		Weak acid
(vi)	$\mathrm{CH}_{3} \mathrm{COOH}$	$+$	NH_{3}	\rightleftharpoons	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	+	$\mathrm{NH}_{4}{ }^{+}$
	Strong acid		Strong base		Weak base		Weak acid

LEWIS CONCEPT (1939)

(a) Lewis acid :- According to this concept those species which have self tendency to accept the lone pair of electrons are called acids. i.e. Lewis acid is an electron pair acceptor (electrophilic).
$\mathrm{H}^{+}+: \ddot{\mathrm{O}} \cdot \ddot{\mathrm{O}}_{\mathrm{a}} \mathrm{H}^{-} \longrightarrow \mathrm{H}: \ddot{\mathrm{O}} \cdot \underset{\mathrm{x}}{-} \mathrm{H}$
Acid Base

Classification of Lewis acids :-

(i) Compounds whose central atom have an incomplete octect (electron deficient)

Ex. $\mathrm{BF}_{3}, \mathrm{BBr}_{3}, \mathrm{BCl}_{3}, \mathrm{Bl}_{3}, \mathrm{~B}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{~B}(\mathrm{OH})_{3}, \mathrm{AlCl}_{3}, \mathrm{GeCl}_{3}$ etc.

(ii) Compounds whose central atom have vacant d-orbitals and can accept one or more pair of lone electrons.

Ex. $\mathrm{SF}_{4}, \mathrm{SF}_{6}, \mathrm{SnCl}_{2}, \mathrm{SnCl}_{4}, \mathrm{PX}_{3}, \mathrm{PX}_{5}, \mathrm{GeX}_{4}, \mathrm{TeX}_{4}, \mathrm{IF}_{5}, \mathrm{IF}_{7}$, etc.

S_{6}

IF_{5}
(iii) Molecules with a multiple bond between atoms of different electronegativities.

Ex. $\mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{SO}_{3}$ etc.
${ }_{\mathrm{O}}^{\mathrm{O}}=\stackrel{+\delta}{\mathrm{C}}=-\mathrm{O}$
${ }_{-}^{-\delta}=\stackrel{+\delta}{S}=-{ }_{-}^{\delta}$
$\mathrm{O}_{\mathrm{O}}^{-\delta}=\stackrel{+\delta}{\mathrm{S}^{-\delta}}=\mathrm{O}^{-\delta}$
$\mathrm{O}=\mathrm{C}=\mathrm{O}$
Lewis acid

$$
+
$$

Lewis base
OH
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
Lewis acid
Lewis base
(iv) Cations:-

Ex. $\mathrm{Ag}^{+}, \mathrm{Na}^{+}, \mathrm{Li}^{+}, \mathrm{Al}^{+3}, \mathrm{Be}^{+2}, \mathrm{Mg}^{+2}, \mathrm{I}^{+}, \mathrm{Cl}^{+}, \mathrm{H}^{+}$etc.
False cations :-
Ex. $\mathrm{NH}_{4}{ }^{+}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}, \mathrm{PH}_{4}{ }^{+}$etc.
Ex. $\mathrm{Ag}^{+}+2: \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(: \mathrm{NH}_{3}\right)_{2}\right]^{+}$

$$
\mathrm{Cu}^{+2}+2\left(: \mathrm{H}_{2} \mathrm{O}\right)_{2} \longrightarrow\left[\mathrm{Cu}\left(: \mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+2}
$$

(v) Elements which have six electrons in their outermost shell or valence shell.

$$
\begin{aligned}
& \text { O-Family (O, S, Se, Te) Po - Radioactive element } \\
& \begin{array}{l}
\mathrm{SO}_{3}^{-2}+\underset{\text { Öfid }}{\text { Base }} \\
\text { Bacid }
\end{array}\left[\mathrm{SO}_{3} \longrightarrow \mathrm{O}^{-2}\right.
\end{aligned}
$$

(b) Lewis base :- Those species which have self tendency to donate the lone pair of electrons are called bases. i.e. a base is an electron pair (lone pair) donor (nucleophile).

Classification of Lewis bases :-

(i) Those species whose central atom have lone pair of electrons and have self tendency to donate them -Ex.

Explain :- $\underset{+\mathrm{I}}{\mathrm{R} \rightarrow \mathrm{O}_{\mathrm{O}}^{-\delta} \leftarrow} \underset{+\mathrm{I}}{\mathrm{R}} \quad$ (Electron density on O , increases due to + l effect)
(ii) Anions -

Ex. $\mathrm{O}^{-2}, \mathrm{SO}_{4}^{-2}, \mathrm{CO}_{3}^{-2}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{F}^{-}, \mathrm{I}^{-}, \mathrm{N}^{-3}, \mathrm{P}^{-3}, \mathrm{NO}_{3}^{-}, \mathrm{S}^{-2}, \mathrm{CN}^{-}$, etc.
(c) Nature of water:- According to this concept nature of water is basic i.e. water is a base.
(d) Neutralisation Reaction :- According to this concept those reactions in which acid and base react together to form a co-ordinate bond between them are called neutralisation reactions.

Ex.

(e) Strength of acids and bases :- This concept explain the strength of acids and bases depending upon the basis of self tendency. To accept or donate the lone pair of electrons (e^{-}).

Ex. $\mathrm{SO}_{2}<\mathrm{SO}_{3}$ (Strong acid)

PRACTICE SECTION-05

Q. 1 Which of the following statements about $\mathrm{HCO}_{3}{ }^{-}$are correct?

1. It is a Bronsted acid
2. It can ionize in water to form $\mathrm{CO}_{3}{ }^{2-}$ (aq)
3. It does not exist in aqueous solution
4. It is a Bronsted base.

Select the correct answer using the codes given below :
(1) 1, 2 and 3
(2) 2, 3 and 4
(3) 1, 3 and and
(4) 1, 2 and 4
Q. 2 Which one of the following is the correct statement?
(1) $\mathrm{H}_{2} \mathrm{O}$ is the conjugate base of OH^{-}
(2) NH_{2}^{-}is the conjugate acid of NH_{3}
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is the conjugate acid of HSO_{4}^{-}
(4) NH_{3} is the conjugate base of NH_{2}^{-}
Q. 3 Which of the following indicates the titration of a weak base against a strong acaid?
(1)

(2)

(3)

(4)

Q. 4 The pH range of an indicator is given by
(1) $\mathrm{pH}=\mathrm{pK}+1$
(2) $\mathrm{pH}=\mathrm{pK}-1$
(3) $\mathrm{pH}=\mathrm{pK}$
(4) $\mathrm{pH}=\mathrm{pK} \pm 1$

ANSWER KEY

Que.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Ans.	4	3	4	4

Q. 1 If $\left[\mathrm{OH}^{-}\right]=5.0 \times 10^{-5} \mathrm{M}$ then pH will be :-
(1) $5-\log 5$
(2) $9+\log 5$
(3) $\log 5-5$
(4) $\log 5-9$
Q. 2 Find out pH of solution having 2×10^{-3} moles of OH^{-}ion's in 2 litre solution :-
(1) $\mathrm{pH}=3$
(2) $\mathrm{pH}=3+\log 2$
(3) $\mathrm{pH}=3-\log 2$
(4) $\mathrm{pH}=11$
Q. 3 The pH of a soft drink is 3.82. The hydrogen ion concentration will be:-
(1) $1.96 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$
(2) $1.6 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
(3) $1.96 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
(4) None of them
Q. 4 Given $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{K}_{\mathrm{a}}} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-} ; \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}$ $\xrightarrow{\mathrm{K}_{\mathrm{B}}} \mathrm{HF}+\mathrm{OH}^{-}$.
Which realtion is correct ?
(1) $K_{b}+K_{w}$
(2) $K_{b}=\frac{1}{K_{w}}$
(3) $K_{a} \times K_{b}=K_{w}$
(4) $\frac{K_{a}}{K_{b}}=K_{w}$

OSTWALD'S DILUTION LAW

Q. 5 Order of dissociation of $0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ is:(Dissociation constant $=1 \times 10^{-5}$)
(1) 10^{-5}
(2) 10^{-4}
(3) 10^{-3}
(4) 10^{-2}
Q. 6 Degree of dissociation of $0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ is: $\left(\mathrm{K}_{\text {acid }}\right.$ $=1 \times 10^{-5}$)
(1) 10^{-5}
(2) 10^{-4}
(3) 10^{-3}
(4) 10^{-2}
Q. 7 If α is the degree of dissociation of weak dibasic organic acid and y is the hydrogen ion concentration, what is the initial concentration of acid :-
(1) $\frac{\alpha(y)^{-1}}{2}$
(2) $y(\alpha)^{-1}$
(3) $\frac{y(\alpha)^{-1}}{2}$
(4) None of them
Q. 8 The degree of dissociation of acetic acid is given by the expression $\alpha=0.1 \times \mathrm{C}^{-1}$ (where $\mathrm{C}=$ concentration of the acid) What is the pH of the solution :-
(1) 1
(2) 2
(3) 3
(4) 4
Q. 9 The degree of ionisation of a compound depends upon:
(1) Size of the solute molecules
(2) Nature of the solute molecules
(3) Nature of the container taken
(4) The amount of current passed
Q. 10 Find out K_{a} for $10^{-2} \mathrm{M} \mathrm{HCN}$ acid, having pOH is 10: -
(1) $K_{a}=10^{-4}$
(2) $K_{a}=10^{-2}$
(3) $K_{a}=10^{-5}$
(4) None of them
Q. 11 Which of the following will occur if a 1.0 M solution of a weak acid is diluted to 0.01 M at constant temperature:-
(1) Percentage ionisation will increase
(2) $\left[\mathrm{H}^{+}\right]$will decrease to 0.01 M
(3) K_{a} will increase
(4) pH will decrease by 2 units
Q. 12 The pH of 0.15 M solution of $\mathrm{HOCl}\left(\mathrm{K}_{\mathrm{a}}=9.6 \times 10^{-6}\right)$ is:-
(1) 4.42
(2) 2.92
(3) 3.42
(4) None
Q. 13 If Ka of $\mathrm{HCN}=4 \times 10^{-10}$, then the pH of 2.5×10^{-1} molar HCN (aq) is:-
(1) 4.2
(2) 4.7
(3) 0.47
(4) 5.0
Q. 14 The molarity of nitrous acid at which its pH becomes 2. $\left(K_{a}=4.5 \times 10^{-4}\right)$:-
(1) 0.3333
(2) 0.4444
(3) 0.6666
(4) 0.2222
Q. 15 Correct statement for HCN weak acid at 250C temperature.:-
(1) $\alpha=\frac{K_{a}}{\left[\mathrm{H}^{+}\right]}$
(2) $\alpha=\frac{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{OH}^{-}\right]}{\mathrm{K}_{\mathrm{w}}}$
(3) (1) \& (2) both
(4) $K_{b}=C \alpha^{2}$
Q. 16 For which, dilution law is applicable :
(1) NaCl (SASB)
(2) $\mathrm{HCl}(\mathrm{SA})$
(3) $\mathrm{CH}_{3} \mathrm{COONa}($ WASB $)$
(4) None

BIODATA OF WATER

Q. 17 At any temperature, the proton concentration of water is
(1) $10^{-14} \mathrm{M}$
(2) Kw
(3) $>10^{-7} \mathrm{M}$
(4) $\sqrt{K_{w}}$
Q. 18 Ionic product of water will increase, if :-
(1) Decrease in pressure
(2) Add H^{+}
(3) Add OH^{-}
(4) Increase the temperature
Q. 19 For water at $25^{\circ} \mathrm{C}, 2 \times 10^{-7}$ moles per litre is the correct answer for which one of the followoing
(1) $\left[\mathrm{H}^{+}\right]+\left[\mathrm{OH}^{-}\right]$
(2) $\left[\mathrm{H}^{+}\right]^{2}$
(3) $\left[\mathrm{OH}^{-}\right]^{2}$
(4) $\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]$
Q. 20 The pH of $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{O}$ is :-
(1) 7
(2) >7
(3) <7
(4) 0
Q. 21 At $25^{\circ} \mathrm{C}$, the dissociation constant for pure water is given by :-
(1) $\left(55.4 \times 10^{14}\right)^{-1}$
(2) 1×10^{-14}
(3) $\frac{1 \times 10^{-14}}{18}$
(4) None of these
Q. 22 Ionic product of water is equal to :-
(1) Dissociation constant of water $\times\left[\mathrm{H}_{2} \mathrm{O}\right]$
(2) Dissociation constant of water $\times\left[\mathrm{H}^{+}\right]$
(3) Product of $\left[\mathrm{H}_{2} \mathrm{O}\right]$ and $\left[\mathrm{H}^{+}\right]$
(4) Product of $\left[\mathrm{OH}^{-}\right]^{2}$ and $\left[\mathrm{H}^{+}\right]$
Q. 23 Addition of H^{+}and OH^{-}ion's concentration at $90^{\circ} \mathrm{C}$
(1) 10^{-14}
(2) 10^{-12}
(3) 2×10^{-6}
(4) 2×10^{-7}
Q. 24 At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6.7} \mathrm{~mol} \mathrm{~L}^{-1}$ what is the value of K_{w} at $90^{\circ} \mathrm{C}$:-
(1) 10^{-6}
(2) 10^{-12}
(3) 10^{-67}
(4) $10^{-13.4}$
Q. 25 At 373 K , temp. the pH of pure $\mathrm{H}_{2} \mathrm{O}$ can be:-
(1) <7
(2) >7
(3) $=7$
(4) $=0$
Q. 26 Choose the correct relation:-
(1) $\frac{\mathrm{pH}+\mathrm{pOH}}{14}=7$
(2) $\mathrm{pH}+\mathrm{pOH}=14$
(3) $\mathrm{pOH}=14+\mathrm{pH}$
(4) $\mathrm{pH}=14+\mathrm{pOH}$
Q. 27 The common ion effect is shown by which of the following sets of solutions :-
(1) $\mathrm{BaCl}_{2}+\mathrm{BaNO}_{3}$
(2) $\mathrm{NaCl}+\mathrm{HCl}$
(3) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH} 4 \mathrm{Cl}$
(4) None
Q. 28 Which of the following is a true statement:
(1) The ionisation constant and ionic product of water are same.
(2) Water is a strong electrolyte.
(3) The value of ionic product of water is less than that of its ionisation constant.
(4) At 298 K , the number of H^{+}ions in a litre of water is 6.023×10^{16}.
Q. 29 If it is known that $\mathrm{H}_{2} \mathrm{~S}$ is a weak acid and it is ionised into $2 \mathrm{H}^{+}$and S^{-2}. Then in this solution HCl is added so, pH becomes less, then what will happen: -
(1) Decrease in $\mathrm{S}^{-\mathbf{2}}$ ion concentration
(2) Concentration of $\mathrm{S}^{\mathbf{- 2}}$ is not affected
(3) Increase in S^{-2} ion concentration
(4) It is not possible, to add HCl in solution
Q. 30 Dissociation constant of water at $25^{\circ} \mathrm{C}$ is
(1) $10^{-14} \times(55.5)^{-1}$
(2) $10^{-7} \times(18)^{-1}$
(3) $10^{-14} \times(18)^{-1}$
(4) $10^{-7} \times(55.4)^{-1}$

SALTS, TYPES O F SALT \& CONJUGATE THEORY

Q. 31 Aqueous solution of ammonium sulphate
(1) Turns blue litmus to red
(2) Turns red litmus to blue
(3) Bleaches litmus
(4) Has no action on litmus
Q. 32 Which of the following is not an acidic salt :-
(1) NaHSO_{4}
(2) HCOONa
(3) $\mathrm{NaH}_{2} \mathrm{PO}_{3}$
(4) None of them
Q. 33 Salt hydrolysis in water is due to following nature of water
(1) Neutral nature
(2) Acidic nature
(3) Basic nature
(4) Amphiprotic nature
Q. 34 Which is a basic salt :-
(1) PbS
(2) PbCO_{3}
(3) PbSO_{4}
(4) $2 \mathrm{PbCO}_{3} \cdot \mathrm{~Pb}(\mathrm{OH})_{2}$
Q. 35 A salt ' X ' is dissolved in water of $\mathrm{pH}=7$. The salt is made resulting solution becomes alkaline in nature. The salt is made
(1) A strong acid and strong base
(2) A strong acid and weak base
(3) A weak acid and weak base
(4) A weak acid and strong base
Q. 36 The process of neutralisation invariably results in the production of :-
(1) H^{+}ions
(2) OH^{-}ions
(3) Both H^{+}and OH^{-}ions
(4) Molecules of water

HYDROLYSIS OF SALTS

Q. 37 When salt $\mathrm{NH}_{4} \mathrm{Cl}$ is hydrolysed at $25^{\circ} \mathrm{C}$, the pH is
(1) 7
(2) <7
(3) >7
(4) 0
Q. 38 Degree of hydrolysis of 0.25 M CH 3 COONa is 10% what will be the degree of hydrolysis if concentration of $\mathrm{CH}_{3} \mathrm{COONa}$ is made 0.01 M
(1) 10%
(2) 1%
(3) 50%
(4) 75%
Q. 39 Which salt will not show hydrolysis :-
(1) KCl
(2) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(3) NaCl
(4) All
Q. $40 \mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCOOH}+\mathrm{OH}^{-}$is related:-
(1) $h=\sqrt{K_{h}}$
(2) $h=\sqrt{\frac{K_{h}}{C}}$
(3) $h=\sqrt{\frac{K_{h}}{V}}$
(4) $K_{h}=\sqrt{h c}$
Q. 41 Four solution of $\mathrm{NH}_{4} \mathrm{Cl}$ are taken with concentration $1 \mathrm{M}, 0.1 \mathrm{M}, 0.01 \mathrm{M} \& 0.001 \mathrm{M}$. their degree of hydrolysis are $h_{1}, h_{2} \& h_{3}, h_{4}$. What is the gradation of degree of hydrolysis ?
(1) $h_{1}>h_{2}>h_{3}>h_{4}$
(2) $h_{1}=h_{2}=h_{3}=h_{4}$
(3) $h_{4}>h_{3}>h_{2}>h_{1}$
(4) None of these
Q. 42 If pK_{b} for CN^{-}at $25^{\circ} \mathrm{C}$ is 4.7 . The pH of 0.5 M aqueous NaCN solution is :-
(1) 12
(2) 10
(3) 11.5
(4) 11
Q. 43 The highest pH value is of :-
(1) 0.1 M NaCl
(2) $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$
(3) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}^{2}$
(4) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$
Q. 44 pH of $\mathrm{K}_{2} \mathrm{~S}$ solution is:-
(1) 7
(2) Less than 7
(3) More than 7
(4) 0
Q. 45 For anionic hydrolysis, pH is given by:-
(1) $\mathrm{pH}=\frac{1}{2} \mathrm{pK}_{\mathrm{w}}-\frac{1}{2} \mathrm{pK}_{\mathrm{b}}-\frac{1}{2} \log \mathrm{c}$
(2) $\mathrm{pH}=\frac{1}{2} \mathrm{pK}_{\mathrm{w}}+\frac{1}{2} \mathrm{pKa}-\frac{1}{2} \mathrm{pK}_{\mathrm{b}}$
(3) $\mathrm{pH}=\frac{1}{2} \mathrm{pK}_{\mathrm{w}}+\frac{1}{2} \mathrm{pKa}+\frac{1}{2} \operatorname{logc}$
(4) None of above
Q. 46 A weak acid react with strong base, ionisation constant of weak acid is 10^{-4}. Find out equilibrium constant for this reaction :-
(1) 10^{-10}
(2) 10^{10}
(3) 10^{-9}
(4) 10^{9}
Q. 47 Hydroxyl ion concentration [OH^{-}] in the case of sodium acetate can be expressed as (where K_{a} is dissociation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ and C is the concentration of sodium acetate):-
(1) $\left[\mathrm{OH}^{-}\right]=\left(\mathrm{CK}_{\mathrm{w}} \cdot \mathrm{K}_{\mathrm{a}}\right)^{1 / 2}$
(2) $\left[\mathrm{OH}^{-}\right]=\mathrm{C} . \mathrm{K}_{\mathrm{w}} \sqrt{\mathrm{K}_{\mathrm{a}}}$
(3) $\left[\mathrm{OH}^{-}\right]=\left(\frac{\mathrm{C} . \mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}\right)^{1 / 2}$
(4) $\left[\mathrm{OH}^{-}\right]=\mathrm{C} . \mathrm{K}_{\mathrm{a}} . \mathrm{K}_{\mathrm{w}}$.
Q. 48 Consider:-
(a) FeCl_{3} in water - Basic
(b) $\mathrm{NH}_{4} \mathrm{Cl}$ in water - Acidic
(c) Ammonium acetate in water - Acidic
(d) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in water - Basic

Which is/are not correctly matched:-
(1) b and d
(2) b only
(3) a and c
(4) d only
Q. 49 Which of the following salts undergoes hydrolysis in water:-
(1) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
(2) $\mathrm{CH}_{3} \mathrm{COONa}$
(3) NaNO_{3}
(4) Both of (1) and (2)
Q. 50 Degree of Hydrolysis of $\frac{N}{100}$ solution of KCN is (Given $\mathrm{Ka}=1.4 \times 10^{-9}$)
(1) 2.7×10^{-3}
(2) 2.7×10^{-2}
(3) 2.7×10^{-4}
(4) 2.7×10^{-5}

SOLUBILITY \& SOLUBILITY PRODUCT ($\mathrm{K}_{\text {sp }}$)

Q. 51 Solubility of AgBr in water is S_{1}, in 0.01 M NaBr is S_{3} and in $0.05 \mathrm{M} \mathrm{AgNO}_{3}$ is S_{4}. The correct order of these solubilities is:
(1) $S_{1}>S_{2}>S_{3}>S_{4}$
(2) $S_{1}>S_{2}=S_{3}>S_{4}$
(3) $S_{4}>S_{3}>S_{2}>S_{1}$
(4) $S_{1}>S_{3}>S_{2}>S_{4}$
Q. 52 The solubility product of sparingly soluble univalent salt is defined as the product of ionic concentration in a:-
(1) 1 M solution
(2) Concentration solution
(3) Very dilute solution
(4) Saturated solution
Q. 53 The solubility of AgCl in 0.1 M NaCl is $\left(\mathrm{K}_{\text {sp }}\right.$ of AgCl $=1.2 \times 10^{-10}$)
(1) 0.05
(2) 1.2×10^{-6}
(3) 2×10^{-5}
(4) 1.2×10^{-9}
Q. 54 If the solubility of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ in $10^{-2} \mathrm{M} \mathrm{Na} \mathrm{NO}_{4}$ solution be $2 \times 10^{-6} \mathrm{M}$ then Kap of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ will be
(1) 32×10^{-24}
(2) 16×10^{-18}
(3) 32×10^{-18}
(4) 16×10^{-24}
Q. 55 The expression of solubility product of mercurous iodide is :-
(1) $\left[2 \mathrm{Hg}^{+}\right]^{2} \times 2\left[\mathrm{I}^{-}\right]^{2}$
(2) $\left[\mathrm{Hg}^{++}\right]^{2} \times\left[2 \mathrm{I}^{-}\right]^{2}$
(3) $\left[\mathrm{Hg}_{2}^{2+}\right] \times\left[1^{-}\right]^{2}$
(4) $\left[\mathrm{Hg}^{2+}\right]^{2} \times\left[\mathrm{I}^{-}\right]^{2}$
Q. 56 At $25^{\circ} \mathrm{C}$, the $\mathrm{K}_{\text {sp }}$ value of AgCl is 1.8×10^{-10}. If 10^{-} ${ }^{5}$ moles of Ag^{+}are added to solution then $\mathrm{K}_{\text {sp }}$ will be :-
(1) 1.8×10^{-15}
(2) 1.8×10^{-10}
(3) 1.8×10^{-5}
(4) $18 \times 10^{+10}$
Q. 5750 mL of a solution containing 10^{-3} mole of Ag^{+} is mixed with 50 mL of a 0.1 M HCl solution. How much Ag^{+}remains in solution ? (Kap of $\mathrm{AgCl}=1.0$ $\times 10^{-10}$)
(1) 2.5×10^{-6}
(2) 2.5×10^{-7}
(3) 2.5×10^{-4}
(4) 2.5×10^{-10}
Q. 58 If the solubility of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ in $10^{-2} \mathrm{M} \mathrm{Na} \mathrm{SO}_{4}$ solution be $2 \times 10^{-8} \mathrm{M}$ then Kap of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ will be
(1) 10^{-6}
(2) 10^{-7}
(3) 2×10^{-6}
(4) 2×10^{-7}
Q. 59 Concentration of Ag^{+}ions in saturated solution of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ at $20^{\circ} \mathrm{C}$ is $1.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$. At $20^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is :-
(1) 3.3750×10^{-12}
(2) 1.6875×10^{-10}
(3) 1.68×10^{-12}
(4) 1.6875×10^{-11}
Q. 60 If the concentration of $\mathrm{CrO}_{4}{ }^{2-}$ ion in a saturated solution of silver chromate will be $2 \times 10^{-4} \mathrm{M}$, solubility product of silver chromate will be -
(1) 4×10^{-8}
(2) 8×10^{-12}
(3) 32×10^{-12}
(4) 6×10^{-12}
Q. 61 If the solubility of AgCl (formula mass=143) in water at $25^{\circ} \mathrm{C}$ is $1.43 \times 10^{-4} \mathrm{~g} / 100 \mathrm{~mL}$ of solution then the value of K_{sp} will be:-
(1) 1×10^{-5}
(2) 2×10^{-5}
(3) 1×10^{-10}
(4) 2×10^{-10}
Q. 62 The solubility product of As2S3 is given by the expression:-
(1) $\mathrm{Ksp}=\left[\mathrm{As}^{3+}\right] \times\left[\mathrm{S}^{-2}\right]$
(2) $\mathrm{Ksp}=\left[\mathrm{As}^{3+}\right]^{1}\left[\mathrm{~S}^{-2}\right]^{1}$
(3) $K s p=\left[\mathrm{As}^{3+}\right]^{3}\left[\mathrm{~S}^{-2}\right]^{2}$
(4) $\mathrm{K} s p=\left[\mathrm{As}^{3+}\right]^{2}\left[\mathrm{~S}^{-2}\right]^{3}$
Q. 63 If the solubility of lithium sodium hexeafluoro aluminate $\mathrm{Li}_{3} \mathrm{Na}_{3}\left(\mathrm{AlF}_{6}\right)_{2}$ is ' S ' mol L- ${ }^{-1}$. Its solubility product is equal to :-
(1) S^{8}
(2) $12 \mathrm{~S}^{3}$
(3) $18 \mathrm{~S}^{3}$
(4) $2916 \mathrm{~S}^{8}$
Q. 64 If solubility product of the base $\mathrm{M}(\mathrm{OH})_{3}$ is 2.7×10^{-11}, the concentration of OH^{-1} will be
(1) 3×10^{-3}
(2) 3×10^{-4}
(3) 10^{-3}
(4) 10^{-11}
Q. 65 If the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is S mole/litre. Its solubility product is:
(1) S^{2}
(2) S^{3}
(3) $4 S^{3}$
(4) $2 S^{3}$

APPLICATION OF SOLUBILITY PRODUCT ($\mathrm{K}_{\text {sp }}$)

Q. 66 At $30^{\circ} \mathrm{C}$, In which of the one litre solution, the solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (solubility product $=8 \times 10^{-}$ ${ }^{12}$) will be maximum: -
(1) $0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$
(2) Pure water
(3) $0.05 \mathrm{M} \mathrm{AgNO}_{3}$
(4) $0.05 \mathrm{M} \mathrm{NH}_{3}$
Q. 67 The addition of KCl to AgCl decreases the solubility of AgCl , because
(1) $\mathrm{K}_{\text {sp }}$ of AgCl decreases
(2) K_{sP} of AgCl increases
(3) Solution becomes unsaturated
(4) Ionic product exceeds the $\mathrm{k}_{\text {sp }}$ value
Q. 68 Solubility of AgBr will be minimum in:-
(1) Pure water
(2) $0.1 \mathrm{M} \mathrm{CaBr}_{2}$
(3) 0.1 M NaBr
(4) $0.1 \mathrm{M} \mathrm{AgNO}_{3}$
Q. 69 Solubility product of a sparingly soluble salt AX_{2} is 3.2×10^{-11}. Its solubility in $\mathrm{mol} /$ litre is:
(1) 5.6×10^{-6}
(2) 3.1×10^{-4}
(3) 2×10^{-4}
(4) 4×10^{-4}
Q. 70 In which of the following, the solution of AgSCN will be unsaturated :-
(1) $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{SCN}^{-}\right]=\mathrm{K}_{\mathrm{sp}}$
(2) $\left[\mathrm{Ag}^{+}\right] \times\left[\mathrm{SCN}^{-}\right]<\mathrm{K}_{\mathrm{sp}}$
(3) $\left[\mathrm{Ag}^{+}\right] \times\left[\mathrm{SCN}^{-}\right]>\mathrm{K}_{\text {sp }}$
(4) $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{SCN}^{-}\right]^{2}<\mathrm{K}_{\mathrm{sp}}$
Q. 71 If 's' and 'S' are respectively solubility and solubility product of a sparingly soluble binary electrolyte then :-
(1) $s=S$
(2) $s=S^{2}$
(3) $s=S^{1 / 2}$
(4) $s=\frac{1}{2} S$
Q. 72 It a solution contains $10^{-6} \mathrm{M}$ each of $\mathrm{X}^{-}, \mathrm{Y}^{2-}$ and Z^{3-} ions, then upon addition of $\mathrm{AgNO}_{3}(\mathrm{~s})$ slowly to the above solution with stirring : (Given : $\mathrm{K}_{\mathrm{ap}}(\mathrm{AgX})=9 \times 10^{-14}, \mathrm{~K}_{\mathrm{ap}}\left(\mathrm{Ag}_{2} \mathrm{Y}\right)=4.9 \times 10^{-21}$, $\left.\mathrm{K}_{\text {ap }}\left(\mathrm{Ag}_{3} \mathrm{Z}\right)=5.12 \times 10{ }^{-28}\right)$
(1) ${A g_{3} Z}$ will be the first one to precipitate out.
(2) $\mathrm{Ag}_{2} \mathrm{Y}$ will be the first one to precipitate out.
(3) AgX will be the first one to precipitate out.
(4) Nothing can be said with certainity.
Q. 73 Which of the following metal sulphide has maximum solubility in water?
(1) $\mathrm{CdS}\left(\mathrm{K}_{\mathrm{sp}}=36 \times 10^{-30}\right)$
(2) $\mathrm{FeS}\left(\mathrm{K}_{\text {sp }}=11 \times 10^{-20}\right)$
(3) $\mathrm{HgS}\left(\mathrm{K}_{\mathrm{sp}}=36 \times 10^{-54}\right)$
(4) $\mathrm{ZnS}\left(\mathrm{K}_{\text {sp }}=11 \times 10^{-22}\right)$
Q. 74 If the maximum concentration of PbCl_{2} in water is 0.01 M at 298 K , Its maximum concentration in 0.1 M NaCl will be:-
(1) $4 \times 10^{-3} \mathrm{M}$
(2) $0.4 \times 10^{-4} \mathrm{M}$
(3) $4 \times 10^{-2} \mathrm{M}$
(4) $4 \times 10^{-4} \mathrm{M}$
Q. 75 Which of the following has maximum solubility (Ksp value is given in brackets) :-
(1) $\mathrm{HgS}\left(1.6 \times 10^{-54}\right)$
(2) $\mathrm{PbSO} 4\left(1.3 \times 10^{-8}\right)$
(3) $\mathrm{ZnS}\left(7.0 \times 10^{-26}\right)$
(4) $\mathrm{AgCl}\left(1.7 \times 10^{-10}\right)$
Q. 76 In which of the following, the solubility of AgCl will be maximum:
(1) $0.1 \mathrm{M} \mathrm{AgNO}_{3}$
(2) Water
(3) 0.1 M NaCl
(4) 0.1 M KCl
Q. 77 The solubility product of three sparingly soluble salts are given below :

No. Formula

Solubility product

1 PQ
2 PQ2
4.0×10^{-20}

3 PQ3
3.2×10^{-14}
2.7×10^{-35}
The correct order of decreasing molar solublity is:-
(1) $1,2,3$
(2) 2, 1, 3
(3) $3,2,1$
(4) $2,3,1$
Q. 78 The Ksp value for $\mathrm{Gd}(\mathrm{OH})_{3}$ is 2.8×10^{-23}, the pH at which $\mathrm{Gd}(\mathrm{OH})_{3}$ begins to precipitate is:-
(1) 6.08
(2) 5.08
(3) 8.47
(4) 4.08
Q. 79 If the solubility product of AgBrO_{3} and $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ are 5.5×10^{-5} and 2×10^{-5} respectively, the relationship between the solubilities of these can be correctly represented as:-
(1) $\mathrm{sAgBrO} \mathrm{O}_{3}>\mathrm{sAg}_{2} \mathrm{SO}_{4}$
(2) $\mathrm{sAgBrO} 3=\mathrm{sAg}_{2} \mathrm{SO}_{4}$
(3) $\mathrm{sAgBrO}_{3}<\mathrm{SAg}_{2} \mathrm{SO}_{4}$
(4) $\mathrm{sAgBrO} 3_{3}=\mathrm{sAgSO}_{4}$
Q. 80 Solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1×10^{-11}. At what pH , precipitation of $\mathrm{Mg}(\mathrm{OH})_{2}$ will begin from $0.1 \mathrm{M} \mathrm{Mg}^{2+}$ solution :-
(1) 9
(2) 5
(3) 3
(4) 7
Q. 81 Consider (1) $\mathrm{Zn}(\mathrm{OH})_{2}(2) \mathrm{Cr}(\mathrm{OH})_{3}(3) \mathrm{Mg}(\mathrm{OH})_{2}(4)$ $\mathrm{Al}(\mathrm{OH})_{3}$ which hydroxide is precipitated by $\mathrm{NH}_{4} \mathrm{OH}$ containing $\mathrm{NH}_{4} \mathrm{Cl}$:-
(1) 1,2
(2) 2,4
(3) Only 4
(4) 1, 2, 3 and 4
Q. 82 What will happen if the pH of the solution of $0.001 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ solution is adjusted to $\mathrm{pH}=9$ $\left(\mathrm{K}_{\mathrm{sp}} \mathrm{Mg}(\mathrm{OH})_{2}=8.9 \times 10^{-12}\right)$
(1) ppt will take place
(2) ppt will not take place
(3) Solution will be saturated
(4) None of these
Q. 83 When HCl gas is passed through a saturated solution of common salt, pure NaCl is precipitated because:-
(1) The impurities dissolve in HCl
(2) HCl is slightly soluble in water
(3) The ionic product $\left[\mathrm{Na}^{+}\right] \times\left[\mathrm{Cl}^{-}\right]$exceeds the solubility product of NaCl
(4) The solubility product of NaCl is lowered by Cl^{-}from aq. HCl
Q. 84 To have more sulphide ion concentration, $\mathrm{H}_{2} \mathrm{~S}$ should be passed through:-
(1) 1 N HCl solution
(2) 0.1 M HCl solution
(3) A neutral solution such as water
(4) An ammonical solution
Q. 85 The solubility product of hydroxides of Mg^{+2}, Zn^{+2}, and Fe^{+3} decreases as
Ksp $\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{Ksp} \mathrm{Zn}(\mathrm{OH})_{2}>\mathrm{Ksp} \mathrm{Fe}(\mathrm{OH})_{3}$ The order of precipitation of hydroxides is:-
(1) $\mathrm{Fe}(\mathrm{OH})_{3}, \mathrm{Zn}(\mathrm{OH})_{2}, \mathrm{Mg}(\mathrm{OH})_{2}$
(2) $\mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{Zn}(\mathrm{OH})_{2}, \mathrm{Fe}(\mathrm{OH})_{3}$
(3) $\mathrm{Zn}(\mathrm{OH})_{2}, \mathrm{Fe}(\mathrm{OH})_{3}, \mathrm{Mg}(\mathrm{OH})_{2}$
(4) $\mathrm{Zn}(\mathrm{OH})_{2}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{Fe}(\mathrm{OH})_{3}$
Q. 86 What is the molar concentration of chloride ion for the solution obtained by mixing 300 mL of 3.0 M NaCl and 200 mL of 4.0 M solution of BaCl_{2} :-
(1) 5.0 M
(2) 1.8 M
(3) 1.6 M
(4) None of these

pH

Q. 8710^{-2} mole of NaOH was added to 10 litre of water. The pH wil chage by
(1) 4
(2) 3
(3) 11
(4) 7
Q. 88 pH of water is 7 . When any substance Y is dissolved in water then pH becomes 13. Substance Y is a salt of :-
(1) Strong acid and strong base
(2) Weak acid and weak base
(3) Strong acid and weak base
(4) Weak acid and strong base
Q. 89 Find out $\left(\mathrm{OH}^{-}\right)$concentration in $\mathrm{pH}=3.28$ solution
(1) 5.3×10^{-4}
(2) 5.3×10^{-10}
(3) 1.8×10^{-10}
(4) 1.8×10^{-11}
Q. 90 Calculate the pH of resulting solution obtained by mixing 50 mL of 0.6 N HCl and 50 ml of 0.3 N NaOH
(1) 0.1
(2) 0.8
(3) 2.1
(4) 4
Q. 91 The pH of HCl is 5 . It is diluted by 1000 times Its pH will be
(1) 5
(2) 8
(3) 2
(4) $6-7$
Q. 92 Given:-
(a) $0.005 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(b) $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(c) $10^{-2} \mathrm{M} \mathrm{NaOH}$
(d) 0.01 M HCl

Choose the correct code having same pH :-
(1) a, c, d
(2) b, d
(3) a, d
(4) a, c
Q. 93 What is H^{+}ion concentration of $5 \times 10^{-3} \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$ solution having a 10% dissociation:-
(1) 10^{-3}
(2) 10^{-2}
(3) 10^{-1}
(4) 5×10^{-2}
Q. 94 pH of $3 \times 10^{-3} \mathrm{M}$ solution of $\mathrm{H}_{3} \mathrm{X}$ will be Assuming $\alpha_{1}=1 / 3, \alpha_{3}=$ negligible
(1) 2.40
(2) 3.0
(3) 3.4771
(4) 4.0
Q. 95 What will be th pH and $\% \alpha$ (degree of hydrolysis) respectively for the salt BA of 0.1 M concentration ?
Given : K_{a} for $\mathrm{HA}=10^{-6}$ and K_{b} for $\mathrm{BOH}=10^{-6}$
(1) 5.1 \%
(2) 7.10%
(3)9.0.01 \%
(4) $7.0 .01 \%$
Q. 96 If 100 mL of $\mathrm{pH}=3$ and 400 mL of $\mathrm{pH}=3$ is mixed, what will be the pH of the mixture
(1) 3.2
(2) 3.0
(3) 3.5
(4) 2.8
Q. $9710^{-6} \mathrm{M} \mathrm{HCl}$ is diluted to 100 times. Its pH is :-
(1) 6.0
(2) 8.0
(3) 6.95
(4) 9.5
Q. 98 pH of an aqueous solution of HCl is 5 . If $1 \mathrm{c} . c$. of this solution is diluted to 1000 times. The pH will become
(1) 8
(2) 5
(3) 6.9
(4) None
Q. 99 The pH of solution is increased from 3 to 6 . Its H^{+} ion concentration will be :-
(1) Reduced to half
(2) Doubled
(3) Reduced by 1000 times
(4) Increased by 1000 times
Q. 100 Which relation is wrong
(1) $10^{-\mathrm{pH}}+10^{-\mathrm{pOH}}=10^{-14}$
(2) $\mathrm{pH} \propto \frac{1}{\left[\mathrm{H}^{+}\right]}$
(3) $K_{w} \propto T$
(4) dissociation constant of water $\mathrm{K}=1.8 \times 10^{-16}$
Q. 101 Find the pH of $0.1 \mathrm{M} \mathrm{NaHCO}_{3}$.
(1) 3.7
(2) 8.4
(3) 9.6
(4) None of these
Q. 102 In a solution of $\mathrm{pH}=5$, more acid is added in order to reduce the $\mathrm{pH}=2$. The increase in hydrogen ion concentration is:-
(1) 100 times
(2) 1000 times
(3) 3 times
(4) 5 times
Q. 103 Which wil have pH closer to 1 :
(1) $100 \mathrm{ml} \mathrm{N} / 10 \mathrm{HCl}+100 \mathrm{ml} \mathrm{N} / 10 \mathrm{NaOH}$
(2) $55 \mathrm{ml} \mathrm{N} / 10 \mathrm{HCl}+45 \mathrm{ml} \mathrm{N} / 10 \mathrm{NaOH}$
(3) $10 \mathrm{ml} \mathrm{N} / 10 \mathrm{HCl}+90 \mathrm{ml} \mathrm{N} / 10 \mathrm{NaOH}$
(4) $75 \mathrm{ml} \mathrm{N} / 5 \mathrm{HCl}+25 \mathrm{ml} \mathrm{N} / 5 \mathrm{NaOH}$
Q. 104 An aqueous solution whose $\mathrm{pH}=0$ is :-
(1) Basic
(2) Acidic
(3) Neutral
(4) Amphoteric
Q. 105 The pH of a $10^{-10} \mathrm{M} \mathrm{NaOH}$ solution is nearest to :-
(1) 10
(2) 7
(3) 4
(4) -10
Q. 106 The pH of the solution produced when an aqueous solution of strong acid pH 5 is mixed with equal volume of an aqueous solution of strong acid of pH 3 is :-
(1) 3.3
(2) 3.5
(3) 4.5
(4) 4.0
Q. 107 Which would decrease the pH of $25 \mathrm{~cm}^{3}$ of a 0.01 M solution of hydrochloric acid:-
(1) The addition of $25 \mathrm{~cm}^{3}, 0.005 \mathrm{M}$ hydrochloric acid
(2) The addition of $25 \mathrm{~cm}^{3}, 0.02 \mathrm{M}$ hydrochloric acid
(3) The addition of magnesium metal
(4) None
Q. 108 The pH of a 0.02 M ammonia solution which is 5% ionised will be :-
(1) 2
(2) 11
(3) 5
(4) 7
Q. 109 Pure water is kept in a vessel and it remains exposed to atmospheric CO_{2} which is absorbed. Then the pH will be :-
(1) Greater than 7
(2) Less than 7
(3) 7
(4) Depends on ionic product of water
Q. 110 pH of $10^{-1} \mathrm{M}$ formic acid is:-
(1) 1
(2) >1
(3) <1
(4) 13
Q. 111 For $\frac{\mathrm{N}}{10} \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{pH}$ value is :-
(1) 1
(2) 0.586
(3) 0.856
(4) None
Q. 112 How many moles of NaOH must be removed from 1 litre of aqueous solution to change its pH from 12 to 11.
(1) 0.009
(2) 0.01
(3) 0.02
(4) 0.1
Q. 113 How many moles of HCl must be removed from 1 litre of aqueous HCl solution to change its pH from 2 to 3 :-
(1) 1
(2) 0.02
(3) 0.009
(4) 0.01
Q. 1148 g NaOH and $4.9 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ are present in one litre of the solution. What is its pH
(1) 1
(2) 13
(3) 12
(4) 2
Q. 115 What is the $\Delta \mathrm{pH}$ (final - initial) for $1 / 3 \& 2 / 3$ stages of neutralizaition of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ with 0.1 M NaOH :
(1) $+2 \log 2$
(2) $-2 \log 3$
(3) $2 \log 1 / 4$
(4) $2 \log 2 / 3$
Q. 116 One litre solution contains $1 \mathrm{M} \mathrm{HOCl}\left[\mathrm{Ka}=10^{-8}\right.$] and 1 M NaOH . What is the pH of the solution:-
(1) 8
(2) 11
(3) 5
(4) 2
Q. 117 What is the quantity of NaOH present in 250 cc of the solution, so that it gives a $\mathrm{pH}=13$:-
(1) $10^{-13} \mathrm{~g}$
(2) $10^{-1} \mathrm{~g}$
(3) 1.0 g
(4) 4.0 g
Q. 1180.001 mol of the strong electrolyte $\mathrm{M}(\mathrm{OH})_{2}$ has been dissolved to make a 20 mL of its saturated solution. Its pH will be : $-\left[\mathrm{Kw}=1 \times 10^{-14}\right]$
(1) 13
(2) 3.3
(3) 11
(4) 9.8
Q. 119 0.1 $\mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ has $\mathrm{K}_{1}=10^{-6} \& \mathrm{~K}_{2}=1.5 \times 10^{-12}$. What will be ht concentration of S^{-2} in the solution.
$(1) \approx 10^{-6}$
$(2) \approx 10^{-9}$
$(3) \approx 1.5 \times 10^{-12}$
(4) 1.2×10^{-13}
Q. 120 Four acids HA, HB, HC and HD form salts with NaOH of $\mathrm{pH} 7,8,9$ and 10 respectively when each solution was 0.1 M , the strongest acid is :
(1) HA
(2) HB
(3) HC
(4) HD
Q. 121 pH values of two acids A and B are 4 and 5. The strengths of these two acids are related as :-
(1) The strengths of the two acids cannot be compared.
(2) Acid B is 10 times stronger than acid A.
(3) Strength of acid A : Strength of acid $B=4: 5$
(4) Acid A is 10 times stronger than acid B.
Q. 122 What is the pH of $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$ solution? Ka of acetic acid $=1.8 \times 10^{-5}, \mathrm{~K}_{\mathrm{w}}=10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(1) 2.4
(2) 3.6
(3) 4.8
(4) 9.4

BUFFER SOLUTION \& INDICATORS

Q. 123 The volume of 0.2 M NaOH needed to prepare a buffer of pH 4.74 with mL of 0.2 M acetic acid (KK_{b} of $\mathrm{CH}_{3} \mathrm{COO}^{-}=9.26$) is :
(1) 50 mL
(2) 25 mL
(3) 20 mL
(4) 10 mL
Q. 124 What will be the pH of the solution, if 0.01 moles of HCl is dissolved in a buffer solution containing 0.02 moles of propanoic acid ($\mathrm{Ka}=1.34 \times 10^{-5}$) and 0.0152 moles of salt, at $25^{\circ} \mathrm{C}$: [$\log (0.173)=-0.76]$
(1) 3.11
(2) 4.11
(3) 5.11
(4) 6.11
Q. $125 \frac{\mathrm{~N}}{10}$ acetic acid was titrated with $\frac{\mathrm{N}}{10} \mathrm{NaOH}$. When $25 \%, 50 \%$ and 75% of titration is over then the pH of the solution will be :- $\left[\mathrm{Ka}=10^{-5}\right]$
(1) $5+\log 1 / 3,5,5+\log 3$
(2) $5+\log 3,4,5+\log 1 / 3$
(3) $5-\log 1 / 3,5,5-\log 3$
(4) $5-\log 1 / 3,4,5+\log 1 / 3$
Q. 126 In a buffer solution the ratio of concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ is $1: 1$ when it changes in 2 : 1 what will be the value of pH of buffer:-
(1) Increase
(2) Decrease
(3) No effect
(4) N.O.T.
Q. 127 A buffer solution is prepared in which the concentration of NH_{3} is 0.30 M and the concentration of $\mathrm{NH}_{4}{ }^{+}$is 0.20 M . If K_{b} for NH_{3} equals 1.8×10^{-5}. What is the pH of this solution?
(1) 8.73
(2) 9.08
(3) 9.44
(4) 11.72
Q. 128 pKb for $\mathrm{NH}_{4} \mathrm{OH}$ at certain temperature is 4.74 . The pH of basic buffer containing equimolar concentration of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ will be: -
(1) 7.74
(2) 4.74
(3) 2.37
(4) 9.26
Q. 129 Which can act as buffer: -
(1) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NaOH}$
(2) $\mathrm{HCOOH}+\mathrm{CH}_{3} \mathrm{COONa}$
(3) $40 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{NaCN}+20 \mathrm{~mL}$ of 0.1 M HCl
(4) None of them
Q. 130 The buffer solution play an important role in:-
(1) Increasing the pH value
(2) Decreasing the pH value
(3) Keeping the pH constant
(4) Solution will be neutral
Q. 131 Buffering action of a mixture of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ is maximum when the ratio of salt to acid is equal to -
(1) 1.0
(2) 100.0
(3) 10.0
(4) 0.1
Q. 132 The pink colour of phenolphthalein in alkaline medium is due to -
(1) Negative ion
(2) Positive ion
(3) OH^{-}ions
(4) Neutral form
Q. 133 An acid indicator is represented by $\mathrm{HI}_{\mathrm{n}} .\left(\mathrm{K}_{\mathrm{a}}=10^{-}\right.$ $\left.{ }^{6}\right)$. The range of chage of colour for the indicator is
(1) $3-5$
(2) 4-6
(3) $5-7$
(4) $6-8$
Q. 134 A basic - buffer will obey the equation $\mathrm{pOH}-\mathrm{pK}_{\mathrm{b}}=1$ only under condition: -
(1) [Conjugate acid]: [base] = 1: 10
(2) [Conjugate acid] = [base]
(3) [Conjugate acid]: [base] = 10: 1
(4) N.O.T
Q. 135100 ml . of $0.1, \mathrm{M} \mathrm{NaOH}$ solution is titrated with 100 mL of $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. The pH of the resulting solution is: (For $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{\mathrm{a} 1}=\infty, \mathrm{K}_{\mathrm{a} 2}=$ 10^{-2})
(1) 7
(2) 7.2
(3) 7.4
(4) 6.8
Q. 136 From the following in which titration methyl orange is a best indicator :-
(1) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$
(2) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{NaOH}$
(3) $\mathrm{HCl}+\mathrm{NaOH}$
(4) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH}$
Q. 137 The total number of different kind of buffers obtained during the titration of $\mathrm{H}_{3} \mathrm{PO}_{4}$ with NaOH are :-
(1) 3
(2) 1
(3) 2
(4) 0
Q. 138 A certain acidic buffer solution contains equal concentration of X^{-}and $H X$. The $K b$ for X^{-}is 10^{-10}. The pH of the buffer is :-
(1) 4
(2) 7
(3) 10
(4) 14
Q. 139 When 1.0 mL of dil. HCl acid is added to 100 mL of a buffer solution of pH 4.0 . The pH of the solution
(1) Becomes 7
(2) Does not change
(3) Becomes 2
(4) Becomes 10
Q. 140 Which solution is not a buffer solution ?
(1) $\mathrm{NaCN}(2$ mole) $+\mathrm{HCl}(1$ mole) in 5 L
(2) $\mathrm{NaCN}(1$ mole) $+\mathrm{HCl}(1$ Mole) in 5 L
(3) NH_{3} (2 mole) $+\mathrm{HCl}(1$ mole) in 5 L
(4) $\mathrm{CH}_{3} \mathrm{COOH}(2 \mathrm{~mole})+\mathrm{KOH}(1$ mole) in 5L
Q. 14150 mL of 2 N acetic acid mixed with 10 mL of 1 N sodium acetate solution will have an approximate pH of $\left(\mathrm{K}_{\mathrm{a}}=10^{-5}\right)$:-
(1) 4
(2) 5
(3) 6
(4) 7
Q. 142 Hunderson equation $\mathrm{pH}-\mathrm{pKa}=1$ will be applicable to an acidic buffer when :-
(1) [Acid] $=$ [Conjugate base]
(2) [Acid] $\times 10=$ [Conjugate base]
(3) [Acid] $=$ [Conjugate base] $\times 10$
(4) None of these
Q. 1430.05 M ammonium hydroxide solution is dissolved in 0.001 M ammonium chloride solution. What will be the OH^{-}ion concentration of this solution : $\mathrm{Kb}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=1.8 \times 10^{-5}$
(1) 3.0×10^{-3}
(2) 9.0×10^{-4}
(3) 9.0×10^{-3}
(4) 3.0×10^{-4}
Q. 144 When 0.02 moles of NaOH are added to a litre of buffer solution, its pH changes from 5.75 to 5.80 . What is its buffer capacity :-
(1) 0.4
(2) 0.05
(3) -0.05
(4) 2.5
Q. 145 Calculate the pH of a buffer prepared by mixing 300 cc of $0.3 \mathrm{M} \mathrm{NH}_{3}$ and 500 cc of $0.5 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$. Kb for $\mathrm{NH}_{3}=1.8 \times 10^{-5}$:-
(1) 8.1187
(2) 9.8117
(3) 8.8117
(4) None of these
Q. 146 Calculate the ratio of pH of a solution containing 1 mole of $\mathrm{CH}_{3} \mathrm{COONa}+1$ mole of HCl per litre and of other solution containing 1 mole $\mathrm{CH}_{3} \mathrm{COONa}+1$ mole of acetic acid per litre :-
(1) $1: 1$
(2) $2: 1$
(3) $1: 2$
(4) $2: 3$
Q. 147 Which of the following is not buffer solution?
(1) $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COONa}$
(2) $\mathrm{HCl} / \mathrm{NaCl}$
(3) $\mathrm{HCOOH} / \mathrm{HCOONa}$
(4) $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{NH}_{4} \mathrm{Cl}$
Q. 148 When 20 mL of $\frac{\mathrm{M}}{20} \mathrm{NaOH}$ are added to 10 mL of $\frac{\mathrm{M}}{10} \mathrm{HCl}$, the resulting solution will:-
(1) Turn blue litmus red
(2) Turn phenolphthalein solution
(3) Turn methyl orange red
(4) Will have no effect on either red or blue litmus
Q. 149 What is the suitable indicator for titration of NaOH and oxalic acid: -
(1) Methyl orange
(2) Methyl red
(3) Phenolphthalein
(4) Starch solution
Q. 150 Phenolphthalein does not act as an indicator for the titration between:-
(1) KOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$
(2) NaOH and $\mathrm{CH}_{3} \mathrm{COOH}$
(3) Oxalic acid and KMnO_{4}
(4) $\mathrm{Ba}(\mathrm{OH})_{2}$ and HCl
Q. 151 A Certain buffer solution contains equal concentration of X^{-}and HX . The $\mathrm{K}_{\mathrm{a}} \mathrm{HX}$ is 10^{-8}. The pH of buffer is:
(1) 3
(2) 8
(3) 11
(4) 14

ACID AND BASE

Q. 152 The conjugated acid of O^{-2} ion's is :-
(1) $\mathrm{O}_{2}{ }^{+}$
(2) H^{+}
(3) $\mathrm{H}_{3} \mathrm{O}^{+}$
(4) OH^{-}
Q. 153 Amphoteric oxide is:-
(1) NO_{2}
(2) CO_{2}
(3) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(4) (1) \& (3) both
Q. 154 The strongest base among the following is
(1) Cl^{-}
(2) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
(3) HSO_{4}^{-}
(4) $\mathrm{NO}_{3}{ }^{-}$
Q. 155 Ionization constant of AOH and BOH base one $K_{b_{1}}$ and $K_{b_{2}}$. Their relation is $p K_{b_{1}}<p K_{b_{2}}$. Conjugate of following base, does not show maximum pH :
(1) AOH
(2) BOH
(3) Both of them
(4) NOT
Q. 156 Select the species which can function as - Lewis base, bronsted acid and bronsted base:-
(a) $\mathrm{H}_{2} \mathrm{O}$ (b) NH_{4}^{+}(c) N^{-3}

Correct code is :-
(1) Only a
(2) a, b
(3) a, c
(4) b, c
Q. 157 An example of Lewis acid is:-
(1) CaO
(2) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(3) SO_{3}
(4) None of these
Q. 158 In the reaction $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$water behaves as :-
(1) Acid
(2) Base
(3) Neutral
(4) Both acid \& Base
Q. 159 Which acts as Lewis base in the reaction
$\mathrm{BCl}_{3}+: \mathrm{PH}_{3} \rightarrow \mathrm{Cl}_{3} \mathrm{~B} \leftarrow \mathrm{PH}_{3}$
(1) PH_{3}
(2) BCl_{3}
(3) Both $1 \& 2$
(4) None
Q. 160 In the dissociation, $\mathrm{H}_{2} \mathrm{~A} \stackrel{\mathrm{~K}_{1}}{\rightleftharpoons} \mathrm{H}^{+}+\mathrm{HA}^{-}$

$$
\mathrm{HA}^{-} \stackrel{\mathrm{K}_{2}}{\rightleftharpoons} \mathrm{H}^{+}+\mathrm{A}^{-2}
$$

(1) $K 1$ is equal to $K 2$
(2) K1 is smaller than K2
(3) K1 is greater than K2
(4) K1 is negligible
Q. 161 Which is the strongest Lewis base :-
(1) SbH_{3}
(2) AsH_{3}
(3) PH_{3}
(4) NH_{3}
Q. 162 Which of the following can act as both Bronsted acid and a Bronsted base?
(i) HCOO^{-}
(ii) NH_{3}
(iii) O^{-2}
(iv) HSO_{4}^{-}
(1) (i) and (ii)
(2) (ii) and (iii)
(3) (ii) and (iv)
(4) (i) and (iv)
Q. 163 Conjugate base of hydrazoic acid is :-
(1) HN_{3}^{-}
(2) N_{3}^{-}
(3) N3-
(4) N_{2}^{-}
Q. $164 \mathrm{NH}_{3}$ gas dissolves in water to give $\mathrm{NH}_{4} \mathrm{OH}$, in this reaction, water acts as :-
(1) An acid
(2) A base
(3) A salt
(4) A conjugate base
Q. 165 In the reaction $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$, the conjugate acid-base pair is
(1) NH_{3} and $\mathrm{H}_{2} \mathrm{O}$
(2) NH_{3} and OH^{-}
(3) $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{4}{ }^{+}$
(4) $\mathrm{NH}_{4}{ }^{+}$and NH_{3}
Q. 166 When ammonia is added to water it decreases the concentration of which of the following ion
(1) OH^{-}
(2) $\mathrm{H}_{3} \mathrm{O}^{+}$
(3) $\mathrm{NH}_{4}{ }^{+}$
(4) None
Q. 167 The strongest acid among the following is -
(1) $\mathrm{ClO}_{3}(\mathrm{OH})$
(2) $\mathrm{ClO}_{2}(\mathrm{OH})$
(3) $\mathrm{SO}(\mathrm{OH})_{2}$
(4) $\mathrm{SO}_{2}(\mathrm{OH})_{2}$
Q. 168 The mixed salt among the following is :-
(1) ${\underset{\mathrm{CH}}{ }(\mathrm{OH}) \mathrm{COONa}}_{\mathrm{CH}(\mathrm{OH}) \mathrm{COONa}}$
(2) NaKSO_{4}
(3) CaCl_{2}
(4) All
Q. 169 For two acids A and $B, p K a_{1}=1.2, \mathrm{pKa}_{2}=2.8$ respectively in value, then which is true: -
(1) A \& B both are equally acidic
(2) A is stronger than B
(3) B is stronger than A
(4) None of these
Q. 170 Which of the following example behave as a Lewis acid $\mathrm{BF}_{3}, \mathrm{SnCl}_{2}, \mathrm{SnCl}_{4}$:-
(1) Stanus chloride, stanic chloride
(2) BF_{3}, Stanus chloride
(3) Only BF_{3}
(4) $B F_{3}$, stanus chloride, stanic chloride
Q. 171 In the reaction
$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}$, the conjugate base of HNO_{3} is:-
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{H}_{3} \mathrm{O}^{+}$
(3) $\mathrm{NO}_{3}{ }^{-}$
(4) $\mathrm{H}_{3} \mathrm{O}^{+}$and NO_{3}^{-}
Q. 172 The two Bronsted bases in the reaction
$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}+\mathrm{PO}_{4}{ }^{3-} \rightleftharpoons \mathrm{HPO}_{4}{ }^{2-}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ are
(1) $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$and $\mathrm{PO}_{4}{ }^{2-}$
(2) $\mathrm{HPO}_{4}{ }^{2-}$ and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
(3) $\mathrm{PO}_{4}{ }^{3-}$ and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2}$
(4) $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$and $\mathrm{HPO}_{4}{ }^{2-}$
Q. 173 Which one of the following is the weakest base:-
(1) NaOH
(2) $\mathrm{NH}_{4} \mathrm{OH}$
(3) $\mathrm{Ca}(\mathrm{OH})_{2}$
(4) $\mathrm{Ba}(\mathrm{OH})_{2}$
Q. 174 In which of the following reactions NH_{3} acts as acid
(1) $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$
(2) $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+}$
(3) $\mathrm{NH}_{3}+\mathrm{Na} \rightarrow \mathrm{NaNH}_{2}+\frac{1}{2} \mathrm{H}_{2}$
(4) NH_{3} cannot act as acid
Q. 175 Consider the following reactions :-
(i) $\mathrm{CO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-}$
(ii) $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}$
(iii) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}$
(iv) $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Which of the pairs of reactions proves that water is amphoteric in character :-
(1) (i) and (ii)
(2) (ii) and (iii)
(3) (iii) and (iv)
(4) (i) and (iii)
Q. 176 Which of the following acts as Lewis acid
(1) Cu^{2+}
(2) AlCl_{3}
(3) CO_{2}
(4) All the above
Q. $177 \mathrm{CH}_{3} \mathrm{COO}^{-}$ion is a :-
(1) Weak conjugate base
(2) Strong conjugate base
(3) Weak conjugate acid
(4) Strong conjugate acid
Q. 178 Which of the following is strongest conjugate base
(1) ClO_{4}^{-}
(2) HCO_{3}^{-}
(3) F^{-}
(4) HSO_{4}^{-}
Q. 179 Which of the following is not a Lewis base :-
(1) CN^{-}
(2) ROH
(3) NH_{3}
(4) AlCl_{3}
Q. 180 Which of the following is acid :-
(1) $\mathrm{NH}_{4} \mathrm{Cl}$
(2) MgCl_{2}
(3) CO_{2}
(4) $\mathrm{H}_{2} \mathrm{O}$
Q. 181 Aluminium chloride is :-
(1) Bronsted Lowry acid
(2) Arrhenius acid
(3) Lewis acid
(4) Lewis base
Q. 182 Water is a :-
(1) Protogenic solvent
(2) Protophilic solvent
(3) Amphiprotic solvent
(4) Aprotic solvent
Q. 183 Ammonium ion is :-
(1) A conjugate acid
(2) A conjugate base
(3) Neither an acid nor a basic
(4) Both an acid and a base
Q. 184 Which of the following is not a correct statement
(1) Arrhenius theory of acids-bases is capable of explaining the acidic or basic nature of the substances in the solvents other than water
(2) Arrhenius theory does not explain acidic nature of AlCl_{3}
(3) The aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is alkaline although it does not contain OH^{-}ions
(4) Aqueous solution of CO_{2} is acidic although it does not contain H^{+}ions
Q. 185 For the reaction $\mathrm{NH}_{4}^{+}+\mathrm{S}^{-2} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{HS}^{-}, \mathrm{NH}_{3}$ and S^{-2} are a group of :-
(1) Acids
(2) Bases
(3) Acid-base pair
(4) None of these
Q. 1 pH of the solution of HCOONH_{4} is 6.48 this can be explained by :-
(1) Hydrolysis of both cation and anion
(2) Hydrolysis of cation
(3) Hydrolysis of anion
(4) Hydrolysis of water
Q. 2 What will be the value of pH of $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{K}_{\mathrm{a}}=1.74 \times 10^{-5}\right)$?
(1) 3.4
(2) 3.6
(3) 3.9
(4) 3.0
Q. 3 At $90^{\circ} \mathrm{C}$ pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$. The value of KW at $90^{\circ} \mathrm{C}$ is :-
(1) 10^{-6}
(2) 10^{-12}
(3) 10^{-14}
(4) 10^{-8}
Q. 4 The correct representation of solubility product of SnS_{2} is :-
(1) $\left[\mathrm{Sn}^{4+}\right]\left[\mathrm{S}^{2-}\right]^{2}$
(2) $\left[\mathrm{Sn}^{4+}\right]\left[\mathrm{S}^{2-}\right]$
(3) $\left[\mathrm{Sn}^{4+}\right]\left[2 \mathrm{~S}^{2-}\right]$
(4) $\left[\mathrm{Sn}^{4+}\right]\left[2 \mathrm{~S}^{2-}\right]^{2}$
Q. $5 \mathrm{~K}_{\mathrm{a}}$ for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5} and K_{b} for $\mathrm{NH}_{4} \mathrm{OH}$ is 1.8×10^{-5}. The pH of ammonium acetate will be:
(1) 7.005
(2) 4.75
(3) 7.0
(4) Between 6 and 7
Q. 6 If the solubility product Ksp of a sparingly soluble salt MX_{2} at $25^{\circ} \mathrm{C}$ is 1.0×10^{-11}, the solubility of the salt in $\mathrm{mol} \mathrm{L}^{-1}$ at this temperature will be :
(1) 2.46×10^{14}
(2) 1.36×10^{-4}
(3) 2.60×10^{-7}
(4) 1.20×10^{-10}
Q. 7 A solution of FeCl_{3} in water acts as acidic due to:-
(1) Acidic impurities
(2) Ionisation
(3) Hydrolysis of Fe^{3+}
(4) Dissociation
Q. 8 Addition of conc. HCl to saturated BaCl_{2} solution precipitates BaCl_{2}, because: -
(1) It follows from Le Chatelier's principle
(2) of common-ion-effect
(3) ionic product $\left[\mathrm{Ba}^{++}\right]\left[\mathrm{Cl}^{-}\right]$remains constant in saturated solution
(4) At constant temperature, the product $\left[\mathrm{Ba}^{2+}\right]$ $\left[\mathrm{Cl}^{-}\right]^{2}$ remains constant in a saturated solution.
Q. 9 At $25^{\circ} \mathrm{C}, \mathrm{OH}^{-}$ion concentration in $10^{-5} \mathrm{M}$ $\mathrm{HCl}($ aq. $)$ will be
(1) Zero
(2) $10^{-9} \mathrm{M}$
(3) $10^{-5} \mathrm{M}$
(4) $10^{-2} \mathrm{M}$
Q. 10 The correct order of increasing solubility of AgCl
in (A) water
(B) 0.1 M NaCl
(C) $0.1 \mathrm{BaCl}_{2}$
(D) $0.1 \mathrm{M} \mathrm{NH}_{3}$ is
(1) D $>$ A $>$ B $>$ C
(2) D $>$ C $>$ B $>$ A
(3) B $>$ A $>$ D $>$ C
(2) A $>$ D $>$ B $>$ C
Q. 11 The dissociation constant for water is $1 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$, what is the pH of a 0.001 M KOH solution
(1) 10^{-11}
(2) 10^{-3}
(3) 3
(4) 11
Q. 12 The solubility of $A_{2} X_{3}$ is $y ~ m o l ~ d m ~ i t s ~ s o l u b i l i t y ~$ product is :-
(1) $6 y^{4}$
(2) $64 y^{4}$
(3) $36 y^{5}$
(4) $108 y^{5}$
Q. 13 The pKa of HNO_{2} is 3.37 . The pH of HNO_{2} in its $0.01 \mathrm{~mol} \mathrm{~L}^{-1}$ aqueous solution will be :-
(1) 5.37
(2) 2.69
(3) 1.69
(4) 0.69
Q. 14 If solubility product of AgCl at $25^{\circ} \mathrm{C}$ is 5×10^{-13} then solubility of its :
(1) 5×10^{-13}
(2) 7.1×10^{-7}
(3) 2.5×10^{-13}
(4) 2.5×10^{-6}
Q. 15 The precipitate of $\mathrm{CaF}_{2}\left(\mathrm{~K}_{\mathrm{sp}}=1.7 \times 10^{-10}\right)$ is obtained when equal volumes of the following are mixed?
(1) $10^{-4} \mathrm{M} \mathrm{Ca}^{2+}+10^{-4} \mathrm{M} \mathrm{F}^{-}$
(2) $10^{-2} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
(3) $10^{-5} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
(4) $10^{-3} \mathrm{M} \mathrm{Ca}^{2+}+10^{-5} \mathrm{M} \mathrm{F}^{-}$
Q. 16 Which statement is incorrect for solubility product (Ksp):-
(1) Constant at constant temperature
(2) It behave as equilibrium constant
(3) It is more than zero for soluble salt
(4) It's unit is M^{2} always
Q. 17 When add 0.01 M HCl in aqueous solution of acetic acid
(1) $\mathrm{CH}_{3} \mathrm{COO}^{-}$molar conc. is decrease
(2) $\mathrm{CH}_{3} \mathrm{COOH}$ molar conc. is decrease
(3) $\mathrm{CH}_{3} \mathrm{COO}^{-}$molar conc. is increase
(4) NOT
Q. 18 On passing $\mathrm{H}_{2} \mathrm{~S}$ gas through a solution of Cu^{+2} and Zn^{+2} ions, CuS is precipitated first because:-
(1) Solubility product of CuS is equal to the ionic product of ZnS ;
(2) Solubility product of CuS is equal to the solubility product of ZnS .
(3) Solubility product of CuS is lower than the solubility product of ZnS .
(4) Solubility product of CuS is greater than the solubility product of ZnS .
Q. 19 At 298 K , the solubility of PbCl_{2} is $2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-}$ ${ }^{1}$ then $\mathrm{K}_{\mathrm{sp}}=$? :-
(1) 1×10^{-7}
(2) 3.2×10^{-7}
(3) 1×10^{-5}
(4) 3.2×10^{-5}
Q. 20 The pH of saturated aqueous solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 10 . If the K_{sp} of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 5×10^{-13}, then the concentration of Ba^{2+} ions in the solution is
(1) 1×10^{-5}
(2) 1×10^{-3}
(3) 5×10^{-5}
(4) 1×10^{-2}
Q. 21 A solution of MgCl_{2} in water has pH :
(1) <7
(2) >7
(3) 7
(4) 14.2
Q. 22 If solubility product of $A B_{2}$ is 4×10^{-12} then solubility is :-
(1) 4×10^{-12}
(2) 10^{-12}
(3) 1×10^{-4}
(4) 2×10^{-4}
Q. 23 Which of the following salt undergo hydrolysis
(1) $\mathrm{CH}_{3} \mathrm{COONa}$
(2) KNO_{3}
(3) NaCl
(4) $\mathrm{K}_{2} \mathrm{SO}_{4}$
Q. 24 The minimum concentration of silver ions that is required to start the precipitation of $\mathrm{Ag}_{2} \mathrm{~S}\left(\mathrm{~K}_{\text {sp }}=\right.$ 10^{-51}) in a 0.1 M solution of S^{2-i} :
(1) $10^{-49} \mathrm{M}$
(2) $10^{-50} \mathrm{M}$
(3) $10^{-26} \mathrm{M}$
(4) $10^{-25} \mathrm{M}$
Q. 25 The pH of $1 \mathrm{M} \mathrm{NH} 44 \mathrm{Cl}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$ should be :
(1) zero
(2) between 6 and 7
(3) 7
(4) above 7
Q. 26 Ionic product of water increases with :-
(1) Decreasing pressure
(2) Increasing H^{+}
(3) By mixing OH^{-}
(4) Increasing temperature
Q. 27 In III group what will be done to differentiate between Fe^{+3} and Cr^{+3} :-
(1) Increase the concentration of $\mathrm{NH}_{4} \mathrm{OH}$
(2) Increase the concentration of $\mathrm{NH}_{4}{ }^{+}$ion
(3) Decrease the concentration of OH^{-}
(4) both (2) and (3)
Q. 28 Correct relation is :-
(1) $p K a \times p K_{b}=p K_{w}$
(2) $\mathrm{pKa}+\mathrm{pK}_{b}=\mathrm{pK}_{w}$
(3) $\mathrm{pKa} / \mathrm{pK}_{\mathrm{b}}=\mathrm{pK}{ }_{w}$
(4) $p K_{a}-p K_{b}=p K_{w}$
Q. 29 If k_{sp} of CaF_{2} in pure water is 1.70×10^{-10}, then find the solubility of CaF_{2} in 0.10 M NaF solution :-
(1) 1.70×10^{-10}
(2) 1.70×10^{-9}
(3) 1.70×10^{-8}
(4) 0.10 M
Q. 30 To precipitate Zn in form of ZnS , Why $\mathrm{NH}_{4} \mathrm{OH}$ is first added in the solution before $\mathrm{H}_{2} \mathrm{~S}$ gas is passed through it :-
(1) To convert Zn into Zn^{+2}
(2) To reduce Zinc
(3) To decrease the dissociation of $\mathrm{H}_{2} \mathrm{~S}$
(4) To increase the dissociation of $\mathrm{H}_{2} \mathrm{~S}$
Q. 31 Which of the following salts has maximum solubility?
(1) $\mathrm{HgS}, \mathrm{K}_{\text {sp }}=1.6 \times 10^{-54}$
(2) $\mathrm{PbSO}_{4}, \mathrm{~K}_{\text {sp }}=1.3 \times 10^{-8}$
(3) $\mathrm{ZnS}, \mathrm{K}_{\text {sp }}=7.0 \times 10^{-26}$
(4) $\mathrm{AgCl}, \mathrm{K}_{\text {sp }}=1.7 \times 10^{-10}$
Q. 32 Ka for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5}. Find out the percentage dissociation of $0.2 \mathrm{M} \mathrm{CH} 3{ }_{3} \mathrm{COOH}$ in 0.1 M HCl solution :
(1) 0.018
(2) 0.36
(3) 18
(4) 36
Q. 33 The pKa of a weak acid HA is 4.80. The pK_{b} of weak base BOH is 4.78 . The pH of an aqueous solution of the corresponding salt BA will be :
(1) 9.58
(2) 4.79
(3) 7.01
(4) 9.22
Q. 34 Concentration of a weak acid is 0.1 N and $\mathrm{K}_{\mathrm{a}}=10^{-5}$ then pH will be :-
(1) 4
(2) 3
(3) 2
(4) 5
Q. 35 pH of tomato juice is 4.4. Then concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$will be :-
(1) 39×10^{-4}
(2) 3.9×10^{-5}
(3) 3.9×10^{-4}
(4) 3.9×10^{5}
Q. 36 On adding $\mathrm{NH}_{4} \mathrm{Cl}$ to $\mathrm{NH}_{4} \mathrm{OH}$ solution :-
(1) Conc. of OH^{-}increase
(2) Conc. of $\mathrm{NH}_{4}{ }^{+}$decreases
(3) Conc. of OH^{-}decreases
(4) Dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ increases
Q. 37 A salt is precipitated from a solution when :-
(1) Solution is saturated
(2) Ionic product > Solubility product
(3) Ionic product < Solubility product
(4) Solution is unsaturated
Q. 38 Given that for HA acid, $\mathrm{K}_{\mathrm{a}}=10^{-6}$ and for MOH base $\mathrm{K}_{\mathrm{b}}=10^{-6}$. The pH of 0.1 M MA salt solution will be :-
(1) 5
(2) 7
(3) 9
(4) 2
Q. 39 The Ksp for $\mathrm{Cr}(\mathrm{OH})_{3}$ is 1.6×10^{-30}. The molar solubility of this compound in water is :-
(1) $\sqrt[2]{1.6 \times 10^{-30}}$
(2) $\sqrt[4]{1.6 \times 10^{-30}}$
(3) $\sqrt[4]{1.6 \times 10^{-30} / 27}$
(4) $1.6 \times 10-30 / 27$
Q. 40 An acid HA ionises as
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
The pH of 1.0 M solution is 5 . Its dissociation constant would be :-
(1) 1×10^{-10}
(2) 5
(3) 5×10^{-8}
(4) 1×10^{-5}
Q. 41 Equal volumes of tree acid solutions of $\mathrm{pH} 3,4$ and 5 are mixed in a vessel. What will be the H^{+} ion concentration in the mixture?
(1) $1.11 \times 10^{-4} \mathrm{M}$
(2) $3.7 \times 10^{-4} \mathrm{M}$
(3) $3.7 \times 10^{-3} \mathrm{M}$
(4) $1.11 \times 10^{-3} \mathrm{M}$
Q. 42 The pH of a 0.1 molar solution of the acid HQ is 3. The value of the ionization constant, Ka of this acid is :-
(1) 1×10^{-7}
(2) 3×10^{-7}
(3) 1×10^{-3}
(4) 1×10^{-5}
Q. 43 The ionic product for water is $1 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$, what is the pH of a 0.001 M KOH solution :
(1) 10^{-11}
(2) 10^{-3}
(3) 3
(4) 11
Q. 44 Which buffer solution out of the following will have $\mathrm{pH}>7$:-
(1) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
(2) $\mathrm{HCOOH}+\mathrm{HCOOK}$
(3) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
(4) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$
Q. 45 pH of $0.01 \mathrm{NH}_{2} \mathrm{SO}_{4}$ is :-
(1) 1.7
(2) 2.0
(3) 2.3
(4) 2.7
Q. 46 Which of the following is the strongest acid :
(1) $\mathrm{Ka}=1 \times 10^{-7}$
(2) $\mathrm{Ka}=1 \times 10^{-5}$
(3) $\mathrm{pKa}=9$
(4) $\mathrm{pKa}=3$
Q. 47 The concentration of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 0.05 M then pH
(1) 13.0
(2) 12.7
(3) 11.2
(4) 1
Q. 480.015 g moles of $\mathrm{NH}_{4} \mathrm{OH}$ and 0.025 g moles of $\mathrm{NH}_{4} \mathrm{Cl}$ are present in a solution then pH of mixture is :-
(1) 9.0335
(2) 8.0335
(3) 9.665
(4) 8.665
Q. 49 What is the molar solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$ if $\mathrm{K}_{\mathrm{sp}}=1.0 \times 10^{-38}$?
(1) 3.16×10^{-10}
(2) 1.386×10^{-10}
(3) 1.45×10^{-9}
(4) 1.12×10^{-11}
Q. 50 An aqueous solution contains $10^{-4}\left[\mathrm{H}^{+}\right]$. If it is diluted by mixing equal volume of water then the concentration of OH^{-}in $\mathrm{mol} \mathrm{dm}{ }^{-3}$ will be :-
(1) 0.5×10^{-10}
(2) 2×10^{-10}
(3) 10^{-6}
(4) 10^{-8}
Q. 51 Which of the following is right for diprotic acid :
(1) $K a_{2}>K a_{1}$
(2) $K a_{1}>K a_{2}$
(3) $K a_{2}>\frac{1}{K a_{1}}$
(4) $K a_{2}=K a_{1}$
Q. 52 The pKa of a weak acid (HA) is 4.5. The pOH of an aqueous buffer solution of HA in which 50% of the acid is ionized is :-
(1) 2.5
(2) 9.5
(3) 7.0
(4) 4.5
Q. 53 pH of solution of $0.0005 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is :-
(1) 3.0
(2) -3.0
(3) 11.0
(4) 14.0
Q. 54 If pK_{b} of a base is 7.0 , then K_{a} of its conjugate acid will be
(1) 7
(2) 10^{7}
(3) 10^{-7}
(4) 10^{-14}
Q. 55 pKa of Quinoline base is 4.88 . What will be the pKa of 0.01 M solution of it
(1) 4.88
(2) 0.01
(3) 9.12
(4) 14
Q. 56 The pH of an aqueous solution of a $1 \times 10^{-7} \mathrm{M}$ solution of HCl will be :-
(1) 7
(2) slightly less than 7
(3) slightly greater than 7
(4) 1
Q. $57 \mathrm{H}_{3} \mathrm{~A}$ is weak triprotic acid
$\left(\mathrm{K}_{\mathrm{a}_{1}}=10^{-5}, \mathrm{~K}_{\mathrm{a}_{2}}=10^{-9}, \mathrm{~K}_{\mathrm{a}_{3}}=10^{-13}\right)$
What is the value of pX of $0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{~A}(\mathrm{aq})$ solution? where $\mathrm{pX}=-\log \mathrm{X}$ and $\mathrm{X}=\frac{\left[\mathrm{A}^{3-}\right]}{\left[H A^{2-}\right]}$
(1) 7
(2) 8
(3) 9
(4) 10
Q. 58 Wha tis the hydronium ion concentraction of a 0.02 M solution of Cu^{2+} solution of copper (II) perchlorate? The acidity constant of the following reaction is 5×10^{-9}. $\mathrm{Cu}^{2+}($ aq. $)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{Cu}(\mathrm{OH})^{+}($aq. $)+\mathrm{H}_{3} \mathrm{O}^{+}($aq. $)$
(1) 1×10^{-5}
(2) 7×10^{-4}
(3) 5×10^{-4}
(4) 1×10^{-4}
Q. 59 A 1 L solution contains $0.2 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ and 0.2 M $\mathrm{NH}_{2} \mathrm{Cl}$. If 1.0 mL of 0.001 M HCl is added to it
(1) 2×10^{-5}
(2) 5×10^{-10}
(3) 2×10^{-3}
(4) None of these
Q. 60 A buffer solution is made up of acitec acid [рКа = 5] having conc. $=1.5$ and sodium acetate having conc. $=0.15 \mathrm{M}$. What is the number of OH^{-}ions present in 1 litre solution?
(1) $10^{-10} \mathrm{~N}_{\mathrm{A}}$
(2) $10^{-4} \mathrm{~N}_{\mathrm{A}}$
(3) $10^{-3} \mathrm{~N}_{\mathrm{A}}$
(4) $10^{-6} \mathrm{~N}_{\mathrm{A}}$
Q. 61 When 100 mL of 0.1 M NaCN solution is titrated with 0.1 M HCl solution the variation of pH of solution with volume of HCl added will be :
(1)

(2)

(3)

(4)

Q. 62 1.0 L solution is prepared by mixing 61 gm benzoic acid ($\mathrm{pKa}=4.2$) with 72 gm of soldier benzoate and then 300 mL M HBr solution was added. The pH of final solution is :
(1) 3.6
(2) 3.8
(3) 4.2
(4) 4.8
Q. 63 At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}^{+}\right]=10^{-6} \mathrm{M}$, if 100 ml of $0.2 \mathrm{M} \mathrm{HNO}_{3}$ is added to 20 ml of 1 M NaOH at $90^{\circ} \mathrm{C}$ then pH of the resulting solution will be
(1) 5
(2) 6
(3) 7
(4) None of these
Q. 64 When 0.02 moles of NaOH are added to a litre of buffer solution, its pH chages from 5.75 to 5.80 . What is its buffer capacity :-
(1) 0.4
(2) 0.05
(3) -0.05
(4) 2.5
Q. 65 What amount sodium propanoate should be added to one litre of an aqueous solution containing 0.02 mole of propanoic acid ($\mathrm{K}_{\mathrm{a}}=3 \times$ 10^{-5} at $25^{\circ} \mathrm{C}$) to obtain a buffer solution of pH 4.7
(1) $4.52 \times 10^{-2} \mathrm{~mol}$
(2) $3.52 \times 10^{-2} \mathrm{~mol}$
(3) $2.52 \times 10^{-2} \mathrm{~mol}$
(4) $3 \times 10^{-2} \mathrm{~mol}$
Q. 66 In a buffer solution the ration of concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ is $1: 1$. When it changes in $2: 1$, what will be the value of pH of buffer ?
(1) Increase
(2) Decrease
(3) No Effect
(4) None
Q. 67 A 20.0 mL sample of a 0.20 M solution of the weak diprotic acid $\mathrm{H}_{2} \mathrm{~A}$ is titrated with 0.250 M NaOH . The solution of the second equilvalent point is :
(1) 0.10 M NaHA
(2) $0.153 \mathrm{M} \mathrm{Na}_{2} \mathrm{~A}$
(3) $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{~A}$
(4) $0.0769 \mathrm{M} \mathrm{Na}_{2} \mathrm{~A}$
Q. 68 During the titration of a weak diprotic acid $\left(\mathrm{H}_{2} \mathrm{~A}\right)$ against a strong base (NaOH), the pH of the solution half-way to the first equivalent point and that at the first equivalent point are given respectively by :
(1) $\mathrm{pK}_{\mathrm{a}_{1}}$ and $\mathrm{pK}_{\mathrm{a}_{1}}+\mathrm{pK}_{\mathrm{a}_{2}}$
(2) $\sqrt{\mathrm{pK}_{\mathrm{a}_{1}}}$ and $\frac{\mathrm{pK}_{\mathrm{a}_{1}}+\mathrm{pK}_{\mathrm{a}_{2}}}{2}$
(3) $\mathrm{pK}_{\mathrm{a}_{1}}$ and $\frac{\mathrm{pK}_{\mathrm{a}_{1}}+\mathrm{pK}_{\mathrm{a}_{2}}}{2}$
(4) $\mathrm{pK}_{\mathrm{a}_{1}}$ and $\mathrm{pK}_{\mathrm{a}_{2}}$
Q. 69 Phenolphthalein does not act as an indicator for the titration between :-
(1) KOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$
(2) NaOH and $\mathrm{CH}_{3} \mathrm{COOH}$
(3) Oxalica acd and KMnO_{4}
(4) $\mathrm{Ba}(\mathrm{OH})_{2}$ and HCl
Q. 70 One litre of saturated of CaCO_{3} is evaporated to dryness, 7.0 g of residue is left. The solubility product for CaCO_{3} is :-
(1) 4.9×10^{-3}
(2) 4.9×10^{-5}
(3) 4.9×10^{-9}
(4) 4.9×10^{-7}
Q. $71 \quad A_{3} B_{2}$ is a sparingly solution salt of molar mass M ($\mathrm{g} \mathrm{mol}^{-1}$) and solubility $\times \mathrm{g} \mathrm{lit}^{-1}$. The ration of the molar concentration of B^{3-} to the solubility product of the salt is
(1) $108 \frac{x^{5}}{M^{5}}$
(2) $\frac{1}{108} \frac{M^{4}}{x^{4}}$
(3) $\frac{1}{54} \frac{M^{4}}{x^{4}}$
(4) None
Q. 72 What will happn if the pH of the solution of 0.001 $\mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ solution is adjusted to $\mathrm{pH}=9\left(\mathrm{~K}_{\text {sp }}\right.$ of $\left.\mathrm{Mg}(\mathrm{OH})_{2}=8.9 \times 10^{-12}\right)$
(1) ppt will take place
(2) ppt will not take place
(3) Solution will be saturated
(4) None of these
Q. $73 \mathrm{Na}_{3} \mathrm{PO}_{4}$ which should be added in 10 L of $1.0 \times 10^{-5} \mathrm{M}-\mathrm{BaCl}_{2}$ Solution without any precipitation
(1) 2×10^{-4}
(2) 0.328 gm
(3) 0.164 gm
(4) 0.82 gm

JEE-MAIN

Q. 1 The solubility in water of a sparingly soluble salt $A B_{2}$ is $1.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$. Its solubility product will be
[AIEEE-2003]
(1) 1×10^{-15}
(2) 1×10^{-10}
(3) 4×10^{-15}
(4) 4×10^{-10}
Q. 2 The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ is \times mole/lit. then its solubility product is -
[AIIEEE-2002]
(1) x^{3}
(2) $5 x^{3}$
(3) $4 x^{3}$
(4) $2 x^{2}$
Q. 3 The molar solubility in $\mathrm{mol} \mathrm{L}^{-1}$ of a sparingly soluble salt $M X_{4}$ is ' s '. The corresponding solubility procuct is $\mathrm{K}_{\text {SP }}$ ' s ' given in terms of $\mathrm{K}_{\text {SP }}$ by relation :
[AIEEE-2004]
(1) $s=\left(K_{\text {SP }} / 128\right)^{1 / 4}$
(2) $s=\left(128 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 4}$
(3) $\mathrm{s}=\left(256 \mathrm{~K}_{\text {sp }}\right)^{1 / 5}$
(4) $s=\left(K_{\text {SP }} / 256\right)^{1 / 5}$
Q. 4 The solubility product of a salt gaving general formula MX_{2}, in water is : 4×10^{-12}. The concentration of M^{2+} ions in the aqueous solution of the salt is -
[AIEEE-2005]
(1) $1.0 \times 10^{-4} \mathrm{M}$
(2) $2.0 \times 10^{-6} \mathrm{M}$
(3) $4.0 \times 10^{-10} \mathrm{M}$
(4) $1.6 \times 10^{-4} \mathrm{M}$
Q. 5 Hydrogen ion concentration in mol/L in a solution of $\mathrm{pH}=5.4$ will be-
[AIEEE-2005]
(1) 3.88×10^{6}
(2) 3.98×10^{8}
(3) 3.98×10^{-6}
(4) 3.68×10^{-6}
Q. 6 In a saturated solution of the sparingly soluble strong electrolyte AgIO_{3} (molecular mass = 283) the equilibirium which sets in is - [AIEEE-2005] $\mathrm{AgIO}_{3} \rightleftharpoons \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{IO}_{3(\mathrm{aq})}^{-}$
If the solubility product constant K_{sp} of AglO_{3} at a at a given temperature is 1.0×10^{-8}, what is the mass of AgIO_{3} contained in 100 ml of its saturated solution ?
(1) $28.3 \times 10^{-2} \mathrm{~g}$
(2) $2.83 \times 10^{-3} \mathrm{~g}$
(3) $1.0 \times 10^{-7} \mathrm{~g}$
(4) $1.0 \times 10^{-4} \mathrm{~g}$
Q. 7 The pKa of a weak acid, HA , is 4.80 . the pK_{b} of a weak base, BOH, is 4.78 . The pH of an aqueous solution of the corresponding salt, $B A$, will be -
[AIEEE-2008]
(1) 9.58
(2) 4.79
(3) 7.01
(4) 9.22
Q. 8 Solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is gradually dissolved in a $1.0 \times$ $10^{-4} \mathrm{M} \mathrm{Na} 2_{2} \mathrm{CO}_{3}$ solution. At what concentration of Ba^{2+} will a precipitate begin to form?
[AIEEE-2009]
(1) $8.1 \times 10^{-8} \mathrm{M}$
(2) $8.1 \times 10^{-7} \mathrm{M}$
(3) $4.1 \times 10^{-5} \mathrm{M}$
(4) $5.1 \times 10^{-5} \mathrm{M}$
Q. 9 Solubility product of silve bromide is 5.0×10^{-13}. The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{-1}$) to be added to 1 litre of 0.05 M solution silver mitrate to start the precipitation of AgBr is :-
[AIEEE-2010]
(1) $5.0 \times 10^{-8} \mathrm{~g}$
(2) $1.2 \times 10^{-10} \mathrm{~g}$
(3) $1.2 \times 10^{-9} \mathrm{~g}$
(4) $6.2 \times 10^{-5} \mathrm{~g}$
Q. 10 In aqueous solution the ionization constants for carbonic acid are
$\mathrm{K}_{1}=4.2 \times 10^{-7}$ and $\mathrm{K}_{2}=4.2 \times 10^{-11}$
[AIEEE-2010]
Select the correct statement for a saturated 0.034 M solution of the carbonic acid :-
(1) the concentration of H^{+}is double that of $\mathrm{CO}_{3}{ }^{2-}$
(2) The concentration of $\mathrm{CO}_{3}{ }^{2-}$ is 0.034 M
(3) The concentration of $\mathrm{CO}_{3}{ }^{2-}$ is greater than that of HCO_{3}^{-}
(4) The concentration of H^{+}and HCO_{3}^{-}are approximately equal
Q. 11 At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1.0 $\times 10^{-11}$. At which pH , will Mg^{2+} ions start precipitating in the form of $\mathrm{Mg}(\mathrm{OH})_{2}$ from a solution of $0.001 \mathrm{M} \mathrm{Mg}^{2+}$ ions ions ?
[AIEEE-2010]
(1) 8
(2) 9
(3) 10
(4) 11
Q. 12 The K_{sp} for $\mathrm{Cr}(\mathrm{OH})_{3}$ is 1.6×10^{-30}. The molar solubility of this compound in water is :-
[AIEEE-2011]
(1) $\sqrt[2]{1.6 \times 10^{-30}}$
(2) $\sqrt[4]{1.6 \times 10^{-30}}$
(3) $\sqrt[4]{1.6 \times 10^{-30} / 27}$
(4) $1.6 \times 10^{-30} / 27$
Q. 13 An acid HA ionizes as $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$

The pH of 1.0 M solution is 5 . Its dissociation constant would be :-
[AIEEE-2011]
(1) 1×10^{-10}
(2) 5
(3) 5×10^{-8}
(4) 1×10^{-5}
Q. 14 If $\mathrm{K}_{\text {sp }}$ of CaF_{2} at $25^{\circ} \mathrm{Cis} 1.7 \times 10^{-10}$, the combination amongst the following which gives a precipitate of CaF_{2} is :-
[JEE-MAIN(online)-2012]
(1) $1 \times 10^{-2} \mathrm{M} \mathrm{Ca}^{2+}$ and $1 \times 10^{-5} \mathrm{M} \mathrm{F}^{-}$
(2) $1 \times 10^{-4} \mathrm{M} \mathrm{Ca}^{2+}$ and $1 \times 10^{-4} \mathrm{M} \mathrm{F}^{-}$
(3) $1 \times 10^{-3} \mathrm{M} \mathrm{Ca}^{2+}$ and $1 \times 10^{-5} \mathrm{M} \mathrm{F}^{-}$
(4) $1 \times 10^{-2} \mathrm{M} \mathrm{Ca}^{2+}$ and $1 \times 10^{-3} \mathrm{M} \mathrm{F}^{-}$
Q. 15 The pH of a 0.1 molar solution of the acid HQ is 3 . The value of the ionization constant, Ka of this acid is :-
[AIEEE-2012]
(1) 1×10^{-7}
(2) 3×10^{-7}
(3) 1×10^{-3}
(4) 1×10^{-5}
Q. 16 How many litres of wter must be added to 1 litre of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2 ?
[AIEEE-2013]
(1) 0.1 L
(2) 0.7 L
(3) 2.0 L
(4) 9.0 L
Q. 17 Solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is gradually dissolved in a $1.0 \times$ $10^{-4} \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. At which concentration of Ba^{2+}, precipitate of BaCO_{3} begins begins to from ? $\left(K_{\text {sp }}\right.$ for $\left.\mathrm{BaCO}_{3}=5.1 \times 10^{-9}\right)$
[JEE-MAIN(online)-2013]
(1) $5.1 \times 10^{-5} \mathrm{M}$
(2) $8.1 \times 10^{-7} \mathrm{M}$
(3) $4.1 \times 10^{-5} \mathrm{M}$
(4) $7.1 \times 10^{-8} \mathrm{M}$
Q. 18 NaOH is a strong base. What will be pH of $5.0 \times$ $10^{-2} \mathrm{M} \mathrm{NaOH}$ solution ? $(\log 2=0.3)$
[JEE-MAIN(online)-2013]
(1) 13.70
(2) 13.00
(3) 14.00
(4) 12.70
Q. 19 Which of of the following arrangements repredents the correct order of solubilituies of spartingly soluble salts $\mathrm{Hg}_{2} \mathrm{Cl}_{2+}, \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}, \mathrm{BaSO}_{4}$ and CrCl_{3} respectively ?
[JEE-MAIN(online)-2013]
(1) $\left(\frac{\mathrm{K}_{\mathrm{SP}}}{4}\right)^{\frac{1}{3}},\left(\frac{\mathrm{~K}_{\mathrm{SP}}}{108}\right)^{\frac{1}{5}},\left(\mathrm{~K}_{\mathrm{SP}}\right)^{\frac{1}{2}},\left(\frac{\mathrm{~K}_{\mathrm{SP}}}{27}\right)^{\frac{1}{4}}$
(2) $\left(\mathrm{K}_{\mathrm{SP}}\right)^{\frac{1}{2}},\left(\frac{\mathrm{~K}_{\mathrm{SP}}}{4}\right)^{\frac{1}{3}},\left(\frac{\mathrm{~K}_{\mathrm{SP}}}{27}\right)^{\frac{1}{4}},\left(\frac{\mathrm{~K}_{\mathrm{SP}}}{108}\right)^{\frac{1}{5}}$
(3) $\left(\mathrm{K}_{\mathrm{SP}}\right)^{\frac{1}{2}},\left(\frac{\mathrm{~K}_{\mathrm{SP}}}{108}\right)^{\frac{1}{5}},\left(\frac{\mathrm{~K}_{\mathrm{SP}}}{27}\right)^{\frac{1}{4}},\left(\frac{\mathrm{~K}_{\mathrm{SP}}}{4}\right)^{\frac{1}{3}}$
(4) $\left(\frac{\mathrm{K}_{\mathrm{SP}}}{108}\right)^{\frac{1}{5}},\left(\frac{\mathrm{~K}_{\mathrm{SP}}}{27}\right)^{\frac{1}{4}},\left(\mathrm{~K}_{\mathrm{SP}}\right)^{\frac{1}{2}},\left(\frac{\mathrm{~K}_{\mathrm{SP}}}{4}\right)^{\frac{1}{3}}$
Q. 20 What would be the pH of a solution obtained by mixing 5 g of acetic acid and 7.5 g of sodium acetate and making the volume equal to 500 mL ?
[JEE-MAIN(online)-2013]
$\left(\mathrm{ka}=1.75 \times 10^{-5}, \mathrm{pKa}=4.76\right)$
(1) $4.76<\mathrm{pH}<5.0$
(2) $\mathrm{pH}<4.70$
(3) pH of solution will be equal to pH of acetic acid
(4) $\mathrm{pH}=4.70$
Q. 21 In some solution, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ remains constant even when small amounts of strong acid or strong base are added to them. Tehse solutios are known as:
[JEE-MAIN(online)-2014]
(1) Colloidal solution
(2) True solutions
(3) Ideal solutions
(4) Buffer soutions
Q. 22 Zirconium phosphate $\left[\mathrm{Zr}_{3}\left(\mathrm{PO}_{4}\right)_{4}\right]$ dissociates into three zirconium cations of charge +4 and four phosphate anions of charge -3 . If molar solubility of zirconium phosphate is denoted by S and its solubility prduct by $K_{s p}$ then which of the following relationship between S and $K_{\text {sp }}$ is correct ?
[JEE-MAIN(online)-2014]
(1) $S=\left\{K_{\text {sp }} / 144\right\}^{1 / 7}$
(2) $S=\left\{K_{\text {sp }} /(6912)^{1 / 7}\right\}$
(3) $S=\left\{K_{\text {sp }} /(6912)^{1 / 7}\right.$
(4) $S=\left\{K_{\text {sp }} / 6912\right\}^{7}$
Q. 23 pKa of a weak acid (HA) and $p K_{b}$ of a weak base (BOH) are 3.2 and 3.4 , respectively. The pH of their salt ($A B$) solution is
[JEE-MAIN(online)-2017]
(1) 7.2
(2) 6.9
(3) 7.0
(4) 1.0
Q. 24 Addition of sodium hydroxide solution to a weak acid (HA) results in a buffer of pH 6 . If ionization constant of HA is 10^{-5}. The ration o fsalt to acid concentration in the buffer solution will be :
[JEE-MAIN(online)-2017]
(1) $4: 5$
(2) $1: 10$
(3) $10: 1$
(4) $5: 4$
Q. 2550 mL of 0.2 M ammonia solution is treated with 25 mL of 0.2 M HCl . If pK_{b} of ammonia solution is 4.75 , the pH of the mixture will be :-
(1) 8.25
(2) 4.75
(3) 9.25
(4) 3.75
Q. 26 Which of the following salts is the most basic in aqueous solution ? [JEE-MAIN(online)-2018]
(1) $\mathrm{CH}_{3} \mathrm{COOK}$
(2) FeCl_{3}
(3) $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
(4) $\mathrm{Al}(\mathrm{CN})_{3}$
Q. 27 An alkali is titrated against an acid wihth methyl orange as indicator, which of the following is a correct combination? [JEE-MAIN(online)-2018]

Base	Acid	End point
(1) Strong	Strong	Pinkinsh red to yellow
(2) Weak	Strong	Yellow to Pinkish red
(3) Strong	Strong	Pink to colourless
(4) Weak	Strong	Colourless to pink

Q. 28 An aqueous solution contains $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ and 0.20 M HCl . If equilibrium constants for the formation of HS^{-}from $\mathrm{H}_{2} \mathrm{~S}$ is 1.0×10^{-7} and that of S^{2-} from HS^{-}ions is 1.2×10^{-13} then the concentration of S^{2-} ions in aqueous solution is :-
[JEE-MAIN(offline)-2018]
(1) 3×10^{-20}
(2) 6×10^{-21}
(3) 5×10^{-19}
(4) 5×10^{-8}
Q. 29 A aqueous solution contains an unknown concentration of Ba^{2+}. When 50 mL of a 1 M solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is added, BaSO_{4} just begins to precipitate. The final volume is 500 mL . the solubility product of BaSO_{4} is 1×10^{-10}. What is the original concentration of Ba^{2+} ?
[JEE-MAIN(offline)-2018]
(1) $2 \times 10^{-9} \mathrm{M}$
(2) $1.1 \times 10^{-9} \mathrm{M}$
(3) $1.0 \times 10^{-10} \mathrm{M}$
(4) $5 \times 10^{-9} \mathrm{M}$
Q. 30 Following four solutions are prepared by mixing different volumes of NaOH and H ?Cl of different concentrations, pH of which one of them will be equl to 1 ?
[JEE-MAIN(online)-2018]
(1) $75 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{HCl}+25 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{NaOH}$
(2) $100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
(3) $55 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+45 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
(4) $60 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+40 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
Q. 31 The minimum volume of wqter required to dissovbe 0.1 g lead (II) chloride to get a saturated solution ($\mathrm{K}_{\text {sp }}$ of $\mathrm{PbCl}_{2}=3.2 \times 10^{-8}$; atomis mass of $\mathrm{Pb}=207 \mathrm{u}$) is :
[JEE- MAIN(online)-2018]
(1) 0.36 L
(2) 0.18 L
(3) 17.98 L
(4) 1.798 L
Q. 32 If $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ is 8×10^{-12}, the molar solubilituy of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ in $0.1 \mathrm{M} \mathrm{AgnO}_{3}$ is :
[JEE-MAIN(online)-2019]
(1) $8 \times 10^{-12} \mathrm{M}$
(2) $8 \times 10^{-10} \mathrm{M}$
(3) $8 \times 10^{-11} \mathrm{M}$
(4) $8 \times 10^{-13} \mathrm{M}$
Q. 3325 mL of the given HCl solution requires 30 mL of 0.1 M sodium carbonate soluion. What is the volume of this HCl solution required to titrate 30 mL of 0.2 M aqueous NaOh solution ?
[JEE-MAIN(online)-2019]
(1) 25 mL
(2) 50 mL
(3) 12.5 mL
(4) 75 mL
Q. 34 A mixture of 10 m mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ and 2 g of soldium sulphate was dissolved in water and the volume ws made up to 100 mL . The mass of calcium salphate formed and the concentration fo OH^{-}in resulting solution, respectively, are : (Molar mass of $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ and CaSO_{4} are 74, 143 and $136 \mathrm{~g} \mathrm{~mol}^{-1}$, respectively; K_{sp} of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 5.5×10^{-6})
(1) $1.9 \mathrm{~g}, 0.14 \mathrm{~mol} \mathrm{~L}^{-1}$
(2) $13.6 \mathrm{~g}, 0.14 \mathrm{~mol} \mathrm{~L}^{-1}$
(3) $1.9 \mathrm{~g}, 0.28 \mathrm{~mol} \mathrm{~L}^{-1}$
(4) $13.6 \mathrm{~g}, 0.28 \mathrm{~mol} \mathrm{~L}^{-1}$
Q. 35 The pH of rain water, is approximately :
[JEE-MAIN(online)-2019]
(1) 6.5
(2) 7.5
(3) 5.6
(4) 7.0
Q. 3620 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is added to 30 mL of 0.2 M NH 4 OH solution. The pH of the resulatant mixture is: [$\mathrm{pK} \mathrm{K}_{\mathrm{b}}$ of $\mathrm{NH}_{4} \mathrm{OH}=4.7$].
[JEE-MAIN(online)-2019]
(1) 9.4
(2) 5.0
(3) 9.0
(4) 5.2
Q. 37 If solubility product of $\mathrm{Zr}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ is denoted by $\mathrm{K}_{\text {sp }}$ and its molar solubility is denoted by S , then which of the following relation between S and $\mathrm{k}_{\text {sp }}$ is correct
(1) $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{929}\right)^{\frac{1}{9}}$
(2) $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{216}\right)^{\frac{1}{7}}$
(3) $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{144}\right)^{\frac{1}{6}}$
(4) $S=\left(\frac{K_{\text {sp }}}{6912}\right)^{\frac{1}{7}}$
Q. 38 In an acid-base titration, 0.1 M HCl solution was added to the NaOH solution fo unknow strength. Which of the following correctly shows the chage of pH of the titrction mixture in this experiment?

(A)

(C)

(B)

(D)
(1) (A)
(2) (C)
(3) (D)
(4) (B)
Q. 39 The pH of a $0.02 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution will be
[JEE-MAIN(ONLINE)-2019]
[given $\mathrm{K}_{\mathrm{b}}(\mathrm{NHOH})=10^{-5}$ and $\log 2=0.301$]
(1) 4.65
(2) 5.35
(3) 4.35
(4) 2.65
Q. 40 The molar solubility of $\mathrm{Cd}(\mathrm{OH})_{2}$ is $1.84 \times 10^{-5} \mathrm{M}$ in water. The expected solubility of $\mathrm{Cd}(\mathrm{OH})_{2}$ in a buffer solution of $\mathrm{pH}=12$ is :
[JEE-MAIN(online)-2019]
(1) $6.23 \times 10^{-11} \mathrm{M}$
(2) $1.84 \times 10^{-9} \mathrm{M}$
(3) $\frac{2.49}{1.84} \times 10^{-9} \mathrm{M}$
(4) $2.49 \times 10^{-10} \mathrm{M}$
Q. 41 Two solutions A and B, each of 100 L was made by dissobing 4 g of NaOh and 9.8 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water, respectively. The pH of the resultant solutions obtained from mixing 40 L of solution A and 10 L of solution B is \qquad .
[JEE-MAIN(online)-2020]
Q. 423 g of acetic acid is added to 250 mL of 0.1 M HCl and the solution made up to 500 mL . To 20 mL of theis solution $\frac{1}{2} \mathrm{~mL}$ of 5 M NaOh is added. The pH of the solution is
[JEE-MAIN(online)-2020]
[Given : pKa of acetic acid $=4.75$, molar mass of acetic acid $=60 \mathrm{~g} / \mathrm{mol}, \log 3=0.4771$] neglect any chagen in volume
Q.43 The stoichiometry and solubility of a salt with the solubility curve below is, respectively
[JEE-MAIN(online)-2020]

(1) $X_{2} Y, 2 \times 10^{-9} \mathrm{M}^{3}$
(2) $X Y_{2}, 1 \times 10^{-9} \mathrm{M}^{3}$
(3) $\mathrm{XY}_{2}, 4 \times 10^{-9} \mathrm{M}^{3}$
(4) $\mathrm{XY}, 2 \times 10^{-6} \mathrm{M}^{3}$
Q. 44 For the following Assertion and Reason, the correct option is :
[JEE-MAIN(online)-2020]
Assertion : The pH of water increases with increase in temperature.
Reason : The dissociation of water into H^{+}and OH^{-}is an exothermic reaction.
(1) both assertion and reason are true, but the reason is not the correct explanation fotr the assertion.
(2) Both assertion and reason are false
(3) Assertion is not true, but reason is true
(4) both assertion and reason are true, and the reason is the correct explanation for the assertion.
Q. 45 The Ksp for the following dissociation is 1.6×10^{-5}
[JEE-MAIN(online)-2020]
$\mathrm{PbCl}_{2(\mathrm{~s})} \rightleftharpoons \mathrm{Pb}_{(\mathrm{aq})}^{2}+2 \mathrm{Cl}_{(\mathrm{aq})}^{-}$
Which of the following choices is correct for a mixture of $30 \mathrm{~mL} 0.134 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and 100 mL 0.4 M NaCl ?
(1) $Q<K_{\text {sp }}$
(2) $Q>K_{\text {sp }}$
(3) $Q=K_{\text {sp }}$
(4) Not enough data provided
Q. 46 The solubility of $\mathrm{Cr}(\mathrm{OH})_{3}$ At 298 K is 6.0×10^{-31}. The concentration of hydroxide ions in a saturated solution of $\mathrm{Cr}(\mathrm{OH})_{3}$ will be :
[JEE-MAIN(online)-2020]
(1) $\left(18 \times 10^{-31}\right)^{1 / 4}$
(2) $\left(2.22 \times 10^{-31}\right)^{1 / 4}$
(3) $\left(4.86 \times 10^{-29}\right)^{1 / 4}$
(4) $\left(18 \times 10^{-31}\right)^{1 / 2}$

JEE-ADVANCE

Q. 47 What will be the resultant pH when 200 ml of an aqueous solution of $\mathrm{HCl}(\mathrm{pH}=2.0)$ is mixed with 300 ml of an aqueous solution of $\mathrm{NaOH}(\mathrm{pH}=$ 12.0)?
[JEE-1998]
Q. 48 The pH of 0.1 M solution of the following salts increases in the order
(1) $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}<\mathrm{HCl}$
(2) $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}<\mathrm{NaCN}$
(3) $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
(4) $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$
Q. 49 A buffer solution can be prepared from a mixture of
(1) Sodium acetate and acetic acid in water
(2) Sodium acetate and hydrochloric acid in water
(3) ammonia and ammonium chloride in water
(4) ammonia and sodium hydroxide in water.
Q. 50 The solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in water is $6.7 \times 10^{-6} \mathrm{M}$. Calculate the solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in in a buffer solution of $\mathrm{pH}=8$.
[JEE-1999]
Q. 51 The average concentration of SO_{2} in the atmosphere over a city on a certain day is 10 ppm, when the average temperature is 298 K . Given that the solubility of SO_{2} in water at 298 K is 1.3653 moles litre ${ }^{-1}$ and the pKa of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 1.92, extimate the pH of rain on that day.
[JEE 2000]
[Given: $10^{-1.92}=1.2 \times 10^{-2}, \sqrt{5.5678}=2.5627$, $\log (1.2213)=0.08668]$
Q. 52 For sparingly soluble salt ApBq. The relationship of its soubility product $\left(\mathrm{L}_{s}\right)$ with its solubiity (S) is -
[JEE 2001]
(1) $L_{s}=S^{p+q} \cdot p^{p} \cdot q^{q}$
(2) $L_{s}=S^{p+q} \cdot p^{p} \cdot q^{p}$
(3) $L_{s}=S^{p q} \cdot p^{p} \cdot q^{q}$
(4) $L_{s}=S^{p q} .(p . q)^{p+q}$
Q. 53500 ml of 0.2 M aqueous solution of acetuc acd is mixed with 500 mL of 0.2 M HCl at $25^{\circ} \mathrm{C}$.
(a) Calculate the degree of dissociation of acetic acid in the resulting solution and pH of the solution.
(b) If 6 g of NaOH is added to the above solution, determine final pH. Assume there si no chage in volume on mixing. K_{a} of acetic acid is $1.75 \times 10^{-5} \mathrm{M}$.
[JEE-2002]
Q. 54 A solution which is $10^{-3} \mathrm{M}$ each in $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$, Zn^{2+} and Hg^{2+} is treated with $10^{-16} \mathrm{M}$ sulphide ion. If $\mathrm{K}_{\mathrm{sp}}, \mathrm{MnS}, \mathrm{FeS}, \mathrm{ZnS}$ and HgS are $10^{-15}, 10^{-}$ ${ }^{23}, 10^{-23}$, and 10^{-54} respectively. Which one will precipitate first ?
[JEE 2003]
(1) FeS
(2) MnS
(3) HgS
(4) ZnS
Q. 55 Will the pH of water be same at $4^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$? Explain
[JEE 2003]
Q. 560.1 M of HA is titrated with 0.1 M NaOH , calculate the pH at end point. Given $\mathrm{Ka}(\mathrm{HA})=5 \times$ 10^{-6} and $\alpha \ll 1$.
[JEE 2004]
Q. 57 HX is a weak acid $\left(\mathrm{K}_{\mathrm{a}}=10^{-5}\right)$. It forms a salt NaX (0.1 M) on reacting with caustic soda. The degree of hydrolysisof NaX is
[JEE 2004]
(1) 0.01%
(2) 0.0001%
(3) 0.1%
(4) 0.5%
Q. $58 \mathrm{Ch}_{3} \mathrm{NH}_{2}\left(0.1\right.$ mole, $\left.\mathrm{K}_{\mathrm{b}}=5 \times 10^{-4}\right)$ is added to 0.08 moles of HCl and the solution is diluted to one oitrem resulting hydrogen ion concentration is
[JEE 2005]
(1) 1.6×10^{-11}
(2) 8×10^{-11}
(3) 5×10^{-5}
(4) 2×10^{-2}
Q. 59 if $\mathrm{Ag}^{+}+\mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+} ; \mathrm{K}_{1}=1.6 \times 10^{3}$ and $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{3}+\mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} ; \mathrm{K}_{2}=6.8 \times 10^{3}$ The formation constant of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is :
[JEE 2006]
(1) 6.08×10^{-6}
(2) 6.8×10^{-6}
(3) 1.6×10^{3}
(4) 1.088×10^{7}
Q. 60 The species present in solution when CO_{2} is dissoved in water :
(1) $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
(2) $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{CO}_{3}^{2-}$
(3) $\mathrm{CO}_{3}{ }^{2-}, \mathrm{HCO}_{3}{ }^{-}$
(4) $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{CO}_{3}$
Q. 612.5 mL of $\frac{2}{5} \mathrm{M}$ weak monoacidic base $\left(\mathrm{K}_{\mathrm{b}}=1 \times\right.$ 10^{-12} at $25^{\circ} \mathrm{C}$) is titrated with $\frac{2}{15} \mathrm{M} \mathrm{HCl}$ in water at $25^{\circ} \mathrm{C}$. The concentration of H^{+}at equivalence point is
[JEE 2008]
$\left(K_{w}=1 \times 10^{-14}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
(1) $3.7 \times 10^{-13} \mathrm{M}$
(2) $3.2 \times 10^{-7} \mathrm{M}$
(3) $3.2 \times 10^{-2} \mathrm{M}$
(4) $2.7 \times 10^{-2} \mathrm{M}$
Q. 62 Solubility product constants (K_{SP}) of salts of types $M X, M X_{2}$ and $M_{3} X$ at temperature ' T ' ar 4.0×10^{-8}, 3.2×10^{-14} and 2.7×10^{-15}, respectively. Solubilities ($\mathrm{mol} \mathrm{dm}^{-3}$) of the salts at temperature ' T ' are in the order: [JEE - 2008]
(1) $M X>M X_{2}>M_{3} X$
(2) $M_{3} X>M X_{2}>M X$
(3) $M_{2} X>M_{3} X>M X$
(4) $M X>M_{3} X>M X_{2}$
Q. 63 The dissociation constant of a substituted benzoic acid at $25^{\circ} \mathrm{C}$ is 1.0×10^{-4}. The pH of a 0.01 M solution of its sodium salt is
[JEE- 2009]
Q. 64 Aqueous solutions of $\mathrm{HNO}_{3}, \mathrm{KOH}_{4} \mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ of identical concentrations are provided. The pair(s) of solutions which form a buffer upon mixing is(are) -
(1) HNO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$
(2) KOH and $\mathrm{CH}_{3} \mathrm{COONa}$
(3) HNO_{3} and $\mathrm{CH}_{3} \mathrm{COONa}$
(4) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$
Q. $65 \operatorname{In} 1 \mathrm{~L}$ saturated solution of $\mathrm{AgCl}\left[\mathrm{K}_{\text {sp }}(\mathrm{AgCl})=1.6\right.$ $\left.\times 10^{-10}\right], 0.1 \mathrm{~mol}$ of $\mathrm{CuCl}\left[\mathrm{K}_{\text {sp }}(\mathrm{CuCl})=1.0 \times 10^{-6}\right]$ is added. The resultant concentration of Ag^{+}in the solution is 1.6×10^{-8}. The value of ' x ' is.
[JEE - 2011]
Q. 66 The initial rate of hydrolysis of methyl acetate $(1 \mathrm{M})$ by a weak acid $(\mathrm{Ha}, 1 \mathrm{M})$ is $1 / 100^{\text {th }}$ of that of a strong acid $(H X, 1 M)$, at $25^{\circ} \mathrm{C}$. the K_{a} of $H A$ is
[JEE 2013]
(1) 1×10^{-4}
(2) 1×10^{-5}
(3) 1×10^{-6}
(4) 1×10^{-3}
Q. 67 The K_{sp} of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is is 1.1×10^{-12} at 298 K . the solubility (in mol/L) of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution is
[JEE 2013]
(1) 1.1×10^{-11}
(2) 1.1×10^{-10}
(3) 1.1×10^{-12}
(4) 1.1×10^{-9}

Paragraph For Questions 68 and 69

When 100 mL of 1.0 M HCl was mixed with 100 mL of 1.0 M NaOH in an insulated beaker at constant pressure, a temperature increase of $5.7^{\circ} \mathrm{C}$ was measured for the beaker and its contents.
(Expt-1). Because the enthalpy of neutralization of a strong acid with a strong base is a constant ($-57.0 \mathrm{kJmol}^{-1}$), this experiment could be used to measure the calorimeter constant. In a second experiment (Expt-2), 100 mL of 2.0 M acetic acid ($\mathrm{K}_{\mathrm{a}}=2.0 \times 10^{-5}$) was mixed with 100 mL of 1.0 M NaOH (under identical conditions to (Expt-1)) where a temperature rise of $5.6^{\circ} \mathrm{C}$ was measured.
(Consider heat capacity of all solutions as $4.2 \mathrm{Jg}^{-}$ ${ }^{1} \mathrm{~K}^{-1}$ and density of all solutions as $1.0 \mathrm{~g} \mathrm{~mL}^{-1}$)
Q. 68 Enthalpy of dissociation (in $\mathrm{kJ} \mathrm{mol}^{-1}$) of acetic acid obtained from the Expt-2 is [JEE2015]
(1) 1.0
(2) 10.0
(3) 24.5
(4) 51.4
Q. 69 The pH of the solution after Expt-2
(1) 2.8
(2) 4.7
(3) 5.0
(4) 7.0
Q. 70 The solubility of a salt of weak acid (AB) tpH 3 is $Y \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$. The value of Y is \qquad _.
(Given that the value of soubility product of $A B\left(K_{\text {sp }}\right)=2 \times 10^{-10}$ and the value of ionization constant of $\mathrm{HB}\left(\mathrm{K}_{\mathrm{a}}\right)=1 \times 10^{-8}$) [JEE-2018]

ANSWER KEY

EXERCISE-I

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	4	2	3	4	4	3	1	2	4	1	2	4	4	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	4	4	1	1	1	1	3	4	1	2	3	4	1	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	2	1	4	4	4	2	3	4	2	3	3	3	3	3
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	2	3	3	4	2	4	4	4	2	3	2	1	1	3	3
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	3	4	4	1	3	4	1	2	3	2	3	2	2	4	2
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	2	4	3	3	1	2	2	3	4	1	1	1	4	4	2
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Ans.	4	3	1	1	2	2	3	3	3	1	2	2	4	2	2
Que.	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	1	2	2	2	2	1	1	3	2	1	2	3	1	3	1
Que.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
Ans.	4	4	2	2	1	2	3	4	3	3	1	1	2	3	2
Que.	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Ans.	3	1	1	2	2	1	2	2	1	3	3	2	4	3	3
Que.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165
Ans.	2	4	3	2	2	1	3	1	1	3	4	3	2	1	4
Que.	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans.	2	1	2	2	4	3	3	2	3	3	4	2	2	4	3
Que.	181	182	183	184	185										
Ans.	3	3	1	1	2										

EXERCISE-II

Que.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Ans.	1	1	2	1	3	2	3	2	2	1	4	4	2	2	2
Que.	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$
Ans.	4	1	3	4	3	1	3	1	4	2	4	4	2	3	4
Que.	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	44	$\mathbf{4 5}$
Ans.	2	1	3	2	2	3	2	2	3	1	2	4	4	4	2
Que.	46	47	48	49	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$
Ans.	4	1	1	2	2	2	2	3	3	1	2	4	1	3	1
Que.	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{6 9}$	$\mathbf{7 0}$	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$		
Ans.	3	1	2	1	4	2	4	3	3	1	3	2	2		

EXERCISE-III

Que.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	12	13	14	15
Ans.	3	3	4	1	3	2	3	4	3	4	3	3	1	4	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	1	4	1	1	4	3	2	3	3	1	2	1	2	1
Quo.	31	32	33	34	35	36	37	38	39	40	41	43	44	45	46
Ans.	2	2	1	3	3	3	4	1	2	4	10.6	3	2	2	1
Que.	48	49	52	54	56	57	58	59	60	61	62	63	64	65	66
Ans.	2	$1,2,3$	1	3	9	1	2	4	1	4	4	8	3,4	7	1
Que.	67	68	69	70											
Ans.	2	1	2	4.47											

Q.42. 5.22 to 5.24
Q. 47
$\mathrm{Ph}=11.3010$
Q. $50 \quad \mathrm{~S}=1.203 \times 10^{-3} \mathrm{M}$
Q. 51
$\mathrm{pH}=0.91325$
Q. 53
(a) $=0.0175 \% \quad(b)=4.757$
Q. 55 No, it will be >7 at $0^{\circ} \mathrm{C}$.

JEE Module Details
 (Total =24)

— CLASS - XII: 12 MODULES

PHYSICS

Module - 1

Ch. No.	Chapter Name
1.	Electrostatics
2.	Capacitor \& R-C Circuit
3.	Current Electricity
Ch. No.	Chapter Name -2
1.	MEC
2.	Magnetic Materials
3.	Bar Magnets \& Earth Magnetism
4.	EMI
5.	AC
6.	EMW

Module-3
Ch. No. Chapter Name

1. Ray Optics
2. Wave Optics

Module-4

Ch. No.	Chapter Name
1.	Modern Physics
2.	Nuclear Physics
3.	Electronics - Semiconductor
4.	Principles of Communication System

CHEMISTRY

Module -1 (Physical)
Ch. No. Chapter Name

1. The Solid State
2. Solutions
3. Electrochemistry
4. Chemical Kinetics
5. Surface Chemistry Module -2 (Inorganic)
Ch. No. Chapter Name
6. The p-Block Elements
7. General Principles and Processes of Isolation of Elements (Metallurgy)
8. The d - and f Block Elements
9. Coordination Compounds

Module -3 (Organic)
Ch. No. Chapter Name

1. Halogen Derivatives
2. Oxygen Containing Compound
3. Nitrogen Containing Compound
4. Biomolecules, Polymers \& Chemistry Every Day Life

MATHEMATICS

Module-1

Ch. No.	Chapter Name
1.	Functions
2.	Inverse Trigonometric Functions
3.	Matrix
4.	Determinants

Module-2

Ch. No.	Chapter Name
1.	Limit
2.	Continuity \& Differentiability
3.	MOD
4.	AOD

Module - 3
Ch. No. Chapter Name

1. Integration
2. Area Under Curve
3. Differential Equations

Module-4
Ch. No. Chapter Name

1. Vectors
2. 3-Dimensional Geometry
3. Probability

Module - 5
Ch. No. Chapter Name

1. H\&D
2. M. Reasoning
3. Linear Programing
4. Statistics

Live Classes for NEET, JEE \& NTSE

Face to Face

Interaction with Teacher

सर ये
कैसे हुआ

Ask Your Doubt Through Audio In Running Class

Special Attention

On Every Child

NEET Sarth1 KOTA

BOOK DEMO CLASS : 8090908042

